6. [11 points] For this problem, your final answers must be exact and should be written in the spaces provided.
a. [5 points] Let $V(t)$ be the voltage across a resistor in a circuit (measured in volts) t minutes after 8:00 a.m. on January 29, 2013. The function $V(t)$ is periodic, and it takes 5 minutes to go from a minimum of -10 volts to a maximum of 40 volts. At $8: 37$ a.m., the voltage across the resistor is -10 volts. Find a formula for $V(t)$, assuming $V(t)$ is a sinusoidal function of t.

$$
V(t)=
$$

\qquad
b. [6 points] Find all values of t in the interval $-0.5 \leq t \leq 1$ for which:

$$
5 \sin \left(2 \pi\left(t+\frac{1}{4}\right)\right)+3=0
$$

Your answer must be found algebraically and should be exact. You must show your work carefully to receive full credit.

The solutions in $-0.5 \leq t \leq 1$ are \qquad

