8. [15 points] The number of hemlock trees in the southern Appalachian mountains is declining as a result of an infestation of hemlock woolly adelgids (a kind of insect).

- There are $H(d)$ healthy hemlock trees in the southern Appalachian mountains d days after January 1, 2013.
- There are $I(d)$ infested hemlock trees in the southern Appalachian mountains d days after January 1, 2013.

Note that all hemlock trees are considered healthy unless they are infested. Be sure to write your final answers in the spaces provided.
a. [2 points] Let $J(w)$ be the number of healthy hemlock trees in the southern Appalachian mountains w weeks after January 1, 2013. Find a formula for $J(w)$ in terms of any or all of the functions H and I.

$$
J(w)=
$$

\qquad
b. [3 points] Let $F(d)$ be the fraction of the hemlock trees in the southern Appalachian mountains that are infested d days after January 1, 2013. Find a formula for $F(d)$ in terms of any or all of the functions H and I.

$$
F(d)=
$$

\qquad
c. [4 points] Let $K(d)$ be the total number of hemlock trees in the southern Appalachian mountains, in thousands, d days after January 1, 2013. Find a formula for $K(d)$ in terms of any or all of the functions H and I.

$$
K(d)=
$$

\qquad
d. [3 points] The number of hemlock trees I that are infested in the southern Appalachian mountains is inversely proportional to the cube of the total amount of money M (in millions of dollars) that the government spends combating the spread of the adelgids. Write a formula for I in terms of M, assuming that there were 2,000 infested trees when the government had spent 3 million dollars. You must show your work for this part.

$$
I=
$$

\qquad
e. [3 points] The number of hemlock woolly adelgids A (in millions) is also a function of the amount of money M (in millions of dollars) that the government spends to try to preserve the hemlock trees, and is given by:

$$
A(M)=\frac{4}{M}
$$

for $M \geq 4$. Find the equation of the horizontal asymptote of $y=A(M)$, and interpret this horizontal asymptote in practical terms.
\qquad

