1. [8 points] Radioactive waste has been draining into a lake, causing trees in the surrounding forest to wilt and die. On March 24, 2010, local scientists surveyed the surrounding forest, determining that $S(m)$ thousand trees had begun to wilt m kilometers out from the center of the lake. The scientists determined that 20 thousand trees were decaying 20 kilometers out, and 5 thousand trees were decaying 60 kilometers out.
a. [3 points] Assume that the function S is invertible. Find the average rate of change of the inverse function S^{-1} on the interval $[5,20]$. Write your final answer in the space provided, and include units.

Solution: The average rate of change is

$$
\frac{S^{-1}(20)-S^{-1}(5)}{20-5}=\frac{20-60}{20-5}=-\frac{40}{15}
$$

The average rate of change of S^{-1} on the interval $[5,20]$ is $-\frac{40}{15}$ kilometers/thousand trees
b. [5 points] Find a formula for $S(m)$ in terms of m, assuming that S is a power function of m. Your answer should be exact, and you must show your work carefully, writing your final answer in the space provided.

Solution: If $S(m)$ is a power function, it must have formula $a m^{b}$ for some constants a, b. We know that $S(20)=20$ and $S(60)=5$. This gives us:

$$
\begin{aligned}
a(20)^{b} & =20 \\
a(60)^{b} & =5
\end{aligned}
$$

If we divide the first equation by the second, we get:

$$
\frac{(20)^{b}}{(60)^{b}}=\frac{20}{5}
$$

which simplifies to:

$$
\left(\frac{1}{3}\right)^{b}=4
$$

Taking the natural logarithm of both sides of this equation and simplifying gives us:

$$
\begin{aligned}
b \ln \left(\frac{1}{3}\right) & =\ln 4 \\
b & =\frac{\ln 4}{\ln \left(\frac{1}{3}\right)} \\
b & =-\frac{\ln 4}{\ln 3}
\end{aligned}
$$

And, finally, plugging this into the first equation gives us:

$$
\begin{aligned}
a(20)^{-(\ln 4) /(\ln 3)} & =20 \\
a & =\frac{20}{20^{-(\ln 4) /(\ln 3)}} \\
S(m)= & \frac{20}{20^{-(\ln 4) /(\ln 3)}} m^{-(\ln 4) /(\ln 3)}
\end{aligned}
$$

