10. [11 points] Consider the graphs of $y=k(x)$ and $y=\ell(x)$ given below:

$$
\text { GRAPH OF } y=k(x)
$$

GRAPH OF $y=\ell(x)$

You must show your work in both parts of this problem to receive full credit. Write your final answers in the spaces provided.
a. [5 points] Find a formula for $k(x)$, assuming $k(x)$ is a polynomial of degree seven with zeros at $x=-1, x=0$ and $x=3$.

Solution: The zeros of $k(x)$ are $x=-1,0$ and 3 . From the graph, we can see that the zero at $x=0$ has multiplicity one, and the zeroes at $x=-1$ and $x=3$ have even multiplicities. The graph is clearly flatter at $x=3$, so the multiplicity at this zero is larger than the multiplicity of the zero at $x=-1$. Since we know $k(x)$ has degree 7 , we know that the multiplicity of the zero at $x=-1$ must be 2 , and the multiplicity at $x=3$ must be 4 , giving us $k(x)=a x(x+1)^{2}(x-3)^{4}$ for some constant a.
Since the point $(1,10)$ is on the graph, we know that we must have $k(1)=10$, and hence $10=$ $a(2)^{2}(-2)^{4}$, giving us $a=\frac{5}{32}$.

$$
k(x)=\quad \frac{5}{32} x(x+1)^{2}(x-3)^{4}
$$

b. [6 points] Find a piecewise-defined formula for $\ell(x)$ on $[-2,6]$, given that the graph of $y=\ell(x)$ is made up of a line and a parabola.

Solution: We see from the graph that the linear part has slope

$$
\frac{-3-1}{1-(-2)}=-\frac{4}{3}
$$

So for the linear part, we must have $\ell(x)-(-3)=-\frac{4}{3}(x-1)$, and hence $\ell(x)=-\frac{4}{3}(x-1)-3$. The quadratic part clearly has a vertex at $(3,6)$, and so we must have $\ell(x)=a(x-3)^{2}+6$ for some constant a. Since the point $(6,1.5)$ is on the quadratic part, we get $1.5=a(3)^{2}+6$, and so $a=-0.5$.

$$
\ell(x)=\left\{\begin{array}{cc}
\frac{-\frac{4}{3}(x-1)-3}{-0.5(x-3)^{2}+6} & \text { if } \frac{-2 \leq x \leq 1}{} \\
- & \text { if } \frac{1<x \leq 6}{}
\end{array}\right.
$$

