6. [11 points] For this problem, your final answers must be exact and should be written in the spaces provided.
a. [5 points] Let $V(t)$ be the voltage across a resistor in a circuit (measured in volts) t minutes after 8:00 a.m. on January 29, 2013. The function $V(t)$ is periodic, and it takes 5 minutes to go from a minimum of -10 volts to a maximum of 40 volts. At 8:37 a.m., the voltage across the resistor is -10 volts. Find a formula for $V(t)$, assuming $V(t)$ is a sinusoidal function of t.

Solution: The maximum of $V(t)$ is 40 volts and the minimum -10 volts, so we can calculate the amplitude and the midline:

$$
\text { Amplitude }=\frac{40-(-10)}{2}=25
$$

and

$$
\text { Midline }: y=\frac{40+(-10)}{2}=15
$$

Since it takes 5 minutes to go from a minimum to a maximum, we know the period is $2 \cdot 5=10$. And finally, since the point $(37,-10)$ is a minimum on the graph of $V(t)$, we get:

$$
\begin{gathered}
V(t)=-25 \cos \left(\frac{2 \pi}{10}(t-37)\right)+15 \\
V(t)=\quad-25 \cos \left(\frac{2 \pi}{10}(t-37)\right)+15
\end{gathered}
$$

b. [6 points] Find all values of t in the interval $-0.5 \leq t \leq 1$ for which:

$$
5 \sin \left(2 \pi\left(t+\frac{1}{4}\right)\right)+3=0
$$

Your answer must be found algebraically and should be exact. You must show your work carefully to receive full credit.

Solution: We first isolate the sine to get:

$$
\begin{aligned}
5 \sin \left(2 \pi\left(t+\frac{1}{4}\right)\right)+3 & =0 \\
\sin \left(2 \pi\left(t+\frac{1}{4}\right)\right) & =-0.6
\end{aligned}
$$

Two 'different' solutions to $\sin (x)=-0.6$ are given by $x=\sin ^{-1}(-0.6)$ and $x=\pi-\sin ^{-1}(-0.6)$, and so we can get two 'different' solutions to the equation above by setting:

$$
\begin{array}{rlrl}
2 \pi(t+0.25) & =\sin ^{-1}(-0.6) & 2 \pi(t+0.25)=\pi-\sin ^{-1}(-0.6) \\
t+0.25 & =\frac{\sin ^{-1}(-0.6)}{2 \pi} & & t+0.25=0.5-\frac{\sin ^{-1}(-0.6)}{2 \pi} \\
t & =\frac{\sin ^{-1}(-0.6)}{2 \pi}-0.25 & t & t=0.25-\frac{\sin ^{-1}(-0.6)}{2 \pi}
\end{array}
$$

Finally, we need to add/subtract the period to get the solutions in the interval $[-0.5,1]$. Doing this with a calculator gives us our final answer (below).

The solutions in $-0.5 \leq t \leq 1$ are $\frac{\frac{\sin ^{-1}(-0.6)}{2 \pi}-0.25 ;-\frac{\sin ^{-1}(-0.6)}{2 \pi}+0.25 ; \frac{\sin ^{-1}(-0.6)}{2 \pi}+0.75}{2 \pi}$

