7. [8 points] Some values of the function $f(x)$ are given in the table below.

x	-2	0	2	5	8	10	15	18	20	21
$f(x)$	54.22	30.50	17.16	7.24	13.84	18.24	29.24	5	-9	-20

Note that all values in the table have been rounded to two decimal places. You must show your work for each part of this problem, and write your final answers in the spaces provided.
a. [3 points] Find a formula for $f(x)$ valid for $-2 \leq x \leq 5$, assuming that f is exponential on the interval $[-2,5]$.

Solution: Since $f(x)$ is exponential, we know that it has the form $f(x)=a b^{x}$. From the table above, we see immediately that $a=f(0)=30.50$. To get b, we use the fact that $f(2)=17.16$ to get:

$$
\begin{aligned}
30.5 b^{2} & =17.16 \\
b^{2} & =\frac{17.16}{30.5} \\
b & =\sqrt{\frac{17.16}{30.5}}
\end{aligned}
$$

$$
f(x)=30.5\left(\sqrt{\frac{17.16}{30.5}}\right)^{x}
$$

b. [2 points] Find a formula for $f(x)$ valid for $5 \leq x \leq 15$, assuming that $f(x)$ is linear on the interval [5, 15].
Solution: Since $f(x)$ is linear, it has the form $f(x)=m x+b$. We find the slope using the points $(5,7.24)$ and $(8,13.84)$:

$$
m=\frac{13.84-7.24}{8-5}=\frac{6.6}{3}=2.2 .
$$

So we get $f(x)-7.24=2.2(x-5)$, and hence $f(x)=2.2(x-5)+7.24$.

$$
f(x)=\frac{2.2(x-5)+7.24}{}
$$

c. [3 points] Show that $f(x)$ cannot be concave down on the interval [15, 21]. Make sure any relevant calculations are clearly shown, and write a brief sentence explaining your reasoning.
Solution: Calculating the average rate of change of $f(x)$ on the intervals [15, 18] and [18, 20] gives us:

$$
\frac{5-29.24}{18-15}=\frac{-24.24}{3}=-8.08
$$

and

$$
\frac{-9-5}{20-18}=\frac{-14}{2}=-7 .
$$

Since the average rate of change on $[18,20]$ is greater than the average rate of change on $[15,18]$, $f(x)$ cannot be concave down on $[15,21]$.

