2. [16 points] The five parts of this question are unrelated to each other.
a. [3 points] $f(x)$ is a periodic function with domain $(-\infty, \infty)$, with a period of 5 , with an amplitude of 2 , and with midline $y=-1$. Find the amplitude, period and midline of $g(x)=-7 f(2(x-3))+1$.

The period of $g(x)$ is \qquad .

The amplitude of $g(x)$ is \qquad .

The midline of $g(x)$ is \qquad .
b. [2 points] Let $a, b, c>0$ be positive constants. Evaluate the following limit. You do not need to show any work for this part.

$$
\lim _{x \rightarrow \infty} \frac{(\sqrt{x}+2)^{6}}{a x^{3}+b x+c}=
$$

\qquad
c. [3 points] The graph of a polynomial $y=P(z)$ with its end behavior shown is graphed below. Answer the following questions about $P(z)$.

Is the degree of $P(z)$ even or odd?

$$
\text { even } \quad \text { odd } \quad \text { not possible to tell }
$$

Is the leading coefficient of $P(z)$ positive or negative?
positive negative not possible to tell
What is the smallest possible degree of $P(z)$?

The smallest possible degree of $P(z)$ is \qquad .
2. (continued) Reminder: The parts of this question are unrelated to each other.
d. [3 points] The table below give some values of a function $M(t)$ at different t-values.

t	0	3	5
$M(t)$	625	900	1296

What type of function could $M(t)$ be? Circle all that apply.
linear exponential quadratic none of these
Could $M(t)$ be proportional to t^{2} ?
yes no
If you answered no, briefly explain why not, and if you answered yes, find the constant of proportionality.
e. [5 points] Consider the function, $H(t)=3 e^{1.2 t-3}$, that gives the weight, in grams of a mealworm t days after it hatches. Find the weight of a mealworm when it hatches, find the daily (non-continuous) growth rate of $H(t)$, and find the amount of time it takes for a mealworm to triple in weight, all in exact form, with appropriate units. Be sure to show all your work.

The weight when it hatches is \qquad .

The daily (not continuous) growth rate is \qquad .

The time it takes to triple in weight is \qquad .

