4. [11 points] Consider the graphs of $y=A(x)$ and $y=B(x)$ given below:

a. [2 points] $A(x)$ is a degree 5 polynomial. Write down all of its zeros.

$$
A(x) \text { has zeros at } x=\quad 0,2,3
$$

b. [3 points] Write down a formula for $A(x)$, showing all your work.

Solution: We see that $A(x)$ has double roots at $x=0,2$ and a single root at $x=3$. It thus has the formula

$$
A(x)=a x^{2}(x-2)^{2}(x-3)
$$

To solve for a, we plug in $x=1$, to get

$$
0.5=a(1)^{2}(-1)^{2}(-2),
$$

so $a=-\frac{1}{4}$.

$$
A(x)=\quad-\frac{1}{4} x^{2}(x-2)^{2}(x-3)
$$

c. [3 points] The graph of $B(x)$ has vertical asymptotes at $x=-1$ and $x=1$, and a horizontal asymptote at $y=0.8$. If $B(x)=\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ are polynomials, write down all the zeros of both polynomials.

$$
\begin{aligned}
& p(x) \text { has zeros at } x=\frac{-2,0,2}{-1,1} . \\
& q(x) \text { has zeros at } x=
\end{aligned}
$$

d. [3 points] Write down a possible formula for $B(x)$.

$$
B(x)=\quad \frac{0.8(x+2) x(x-2)}{(x+1)^{2}(x-1)}
$$

