6. [11 points] The graph of $y=F(x)$ is shown below on the left.

a. [4 points] Draw the graph of $y=F^{-1}(x)$ on the provided axes.
b. [4 points] Write a piecewise formula for $F(x)$. (NOT for $F^{-1}(x)$)

Solution: The first segment has slope $\frac{(-2)-(-1)}{1-(-3)}=-\frac{1}{4}$. It passes through the point $(-3,-1)$. Hence, it is a portion of the graph of $y=-\frac{1}{4}(x+3)-1$. The second segment has slope $\frac{3-1}{5-1}=\frac{1}{2}$. It passes through the point $(1,1)$. Hence, it is a portion of the graph of $y=\frac{1}{2}(x-1)+1$.

$$
F(x)=\left\{\begin{array}{ccc}
\frac{-\frac{1}{4}(x+3)-1}{2} & \text { for } & -3 \leq x<1 \\
\frac{1}{2}(x-1)+1 & \text { for } & 1 \leq x \leq 5
\end{array}\right.
$$

c. [3 points] Let $G(w)=\sqrt{w+1}$ with domain $(0,8)$, and let $H(w)=F(G(w))$. What is the range for $H(w)$ and $H^{-1}(y)$? Express your answers using interval notation.

The range for $H(w)$ is \qquad $(1,2)$

The range for $H^{-1}(y)$ is \qquad $(0,8)$

