8. [5 points] Let $y=q(x)=\frac{a x}{1+a x}$, where $a>0$ is a positive constant. Find a formula for the function $q^{-1}(y)$, showing all your work.
Solution:

$$
\begin{gathered}
y=\frac{a x}{1+a x} \\
y(1+a x)=a x \\
y=a x(1-y) \\
\frac{y}{1-y}=a x \\
x=\frac{y}{a(1-y)}
\end{gathered}
$$

$$
q^{-1}(y)=\frac{\frac{y}{a(1-y)}}{\square}
$$

9. [5 points] Consider the function $D(t)$ with its graph shown below on the left, and the piecewisedefined function $S(d)$.


$$
S(d)= \begin{cases}0 & d<0 \\ -d^{2}-10 d+100 & 0 \leq d \leq 10 \\ 0 & d>10\end{cases}
$$

a. [1 point] Is $S(D(t))$ invertible?

> yes no not possible to tell
b. [4 points] Find all solutions $t$ to the equation $S(D(t))=25$. Be sure to show all your work and, if necessary, estimate any coordinates on the graph of $D(t)$ to one decimal place.

Solution: We first solve the equation $S(d)=25$ :

$$
\begin{gathered}
25=-d^{2}-10 d+100 \\
0=d^{2}+10 d-75=(d-5)(d+15) \\
d=5,15
\end{gathered}
$$

Looking at the graph of $D(t)$, the only value of $t$ for which $D(t)=5$ or 25 is $t=3.1$.

$$
t=
$$

