1. [14 points] The following table contains data for the functions A, B and C. Assume that A is invertible and B is periodic with period 5.

x	-3	-2	0	1	2	3
A(x)	4	-7	-1	2.3	0	-0.5
B(x)	6.1	5.4	-1	-7	6.1	5.4
C(x)	0	-1	4	3	0.5	0

For parts (a)-(c) you do not *need* to show any work, but you can receive partial credit for work shown if your final answer is incorrect.

- **a**. [2 points] Circle **all** functions that **could** be *decreasing* on the interval [1,3]:
 - A(x) B(x) C(x) none of them
- **b**. [5 points] Evaluate the following expressions. If there is not enough information to evaluate an expression, write 'NEI':
 - i. [1 point] $A^{-1}(0) =$ ______
 - ii. [2 points] B(-2) + B(7) =_____
 - iii. [2 points] B(C(2) + 0.5) =_____
- c. [3 points] Let $D(x) = \frac{A(x)}{C(x)}$. Circle all values of x from the table that are **not** in the domain of D.
 - -3 -2 0 1 2 3
- d. [4 points] Find all the x values from the table that satisfy the following equation. Show all your work. If there is no solution, write "NO SOLUTION".

$$B(A(x) - 1) = 5.4$$

x =_____