1. [14 points] The following table contains data for the functions A, B and C. Assume that A is invertible and B is periodic with period 5.

x	-3	-2	0	1	2	3
A(x)	4	-7	-1	2.3	0	-0.5
B(x)	6.1	5.4	-1	-7	6.1	5.4
C(x)	0	-1	4	3	0.5	0

For parts (a)-(c) you do not *need* to show any work, but you can receive partial credit for work shown if your final answer is incorrect.

a. [2 points] Circle all functions that could be decreasing on the interval [1,3]:

A(x)	B(x)	C(x)	NONE OF THEM
------	------	------	--------------

b. [5 points] Evaluate the following expressions. If there is not enough information to evaluate an expression, write 'NEI':

i. [1 point]
$$A^{-1}(0) = \underline{2}$$

ii. [2 points]
$$B(-2) + B(7) = \underline{11.5}$$

c. [3 points] Let $D(x) = \frac{A(x)}{C(x)}$. Circle **all** values of x from the table that are **not** in the domain of D.

$$\begin{bmatrix} -3 \end{bmatrix} \qquad -2 \qquad \qquad 0 \qquad \qquad 1 \qquad \qquad 2 \qquad \qquad \boxed{3}$$

d. [4 points] Find **all** the x values from the table that satisfy the following equation. **Show all your work**. If there is no solution, write "NO SOLUTION".

$$B(A(x) - 1) = 5.4$$

Solution:
$$A(x) - 1 = -2$$
 or $A(x) - 1 = 3$ $A(x) = 4$ $x = 0$ $x = -3$ $x = 0, -3$