1. [14 points] The following table contains data for the functions A, B and C. Assume that A is invertible and B is periodic with period 5 .

x	-3	-2	0	1	2	3
$A(x)$	4	-7	-1	2.3	0	-0.5
$B(x)$	6.1	5.4	-1	-7	6.1	5.4
$C(x)$	0	-1	4	3	0.5	0

For parts (a)-(c) you do not need to show any work, but you can receive partial credit for work shown if your final answer is incorrect.
a. [2 points] Circle all functions that could be decreasing on the interval $[1,3]$:
$A(x) \quad B(x) \quad C(x) \quad$ NONE OF THEM
b. [5 points] Evaluate the following expressions. If there is not enough information to evaluate an expression, write ' NEI ':
i. $[1$ point $] A^{-1}(0)=$ \qquad 2
ii. [2 points] $B(-2)+B(7)=$ \qquad
iii. [2 points] $B(C(2)+0.5)=$ \qquad
c. [3 points] Let $D(x)=\frac{A(x)}{C(x)}$. Circle all values of x from the table that are not in the domain of D.
-3
-2
0
1
2
d. [4 points] Find all the x values from the table that satisfy the following equation. Show all your work. If there is no solution, write "NO SOLUTION".

$$
B(A(x)-1)=5.4
$$

Solution:

$$
\begin{aligned}
A(x)-1 & =-2 \\
A(x) & =-1 \\
x & =0
\end{aligned}
$$

or

$$
\begin{aligned}
A(x)-1 & =3 \\
A(x) & =4 \\
x & =-3 \\
x & =\quad 0,-3
\end{aligned}
$$

