11. [10 points] Chandler wants to lose some weight after Thanksgiving and he asks Monica to coach him. His task for today is to jog once around a semicircular path shown in the picture below.

Chandler starts running along the arc from point A to point B and then along the straight path back to point A. He runs at a constant speed of $\frac{2 \pi}{3}$ meters per second the whole time. Monica is standing 8 meters away from point A and 32 meters away from point B.

Suppose t represents the number of seconds after Chandler began to jog.
a. [3 points] For what values of t is Chandler running along the arc $A B$? You can use interval notation or inequalities.

Solution: The length of the arc $A B$ is $s=12 \pi$ meters. If we denote Chandler's (constant) speed as v, then the time needed to cover the arc is: $T=\frac{s}{v}=\frac{12 \pi}{\frac{2 \pi}{3}}=18$ seconds.
b. [4 points] While Chandler runs along the arc $A B, d(t)$ is the vertical distance between his location and the line Monica is standing on t seconds after he started jogging. Find a formula for $d(t)$. (Note that the domain of $d(t)$ should be the t values you found in part (a).)

Solution:

The function $d(t)$ is sinusoidal. The minimum and maximum values are 8 and 32 respectively and the period is 36 (according to the answer from part a). A possible formula for $d(t)$ is $20-12 \cos \left(\frac{\pi}{18} t\right)$.

$$
d(t)=\quad 20-12 \cos \left(\frac{\pi}{18} t\right) \quad, \text { for } \quad 0 \quad \leq t \leq \underline{18} .
$$

c. [3 points] While Chandler runs along the straight path $B A, \ell(t)$ is the vertical distance between Chandler and the line Monica is standing on t seconds after he started jogging. Find a formula for $\ell(t)$.

Solution: The function $\ell(t)$ has to be a linear function, since Chandler is running along a straight path with constant speed. The slope of the linear function will be $-\frac{2 \pi}{3}$ since Chandler is moving from B to A. Now using the fact that Chandler's distance from the line Monica is standing on is 32 meters at $t=18$, we can use point-slope formula and conclude that: $\ell(t)=-\frac{2 \pi}{3}(t-18)+32$. The time Chandler needs to go from B back to A is $\frac{24}{\frac{2 \pi}{3}}=\frac{36}{\pi}$, where 24 is the length of the line segment $B A$.

$$
\ell(t)=\quad-\frac{2 \pi}{3}(t-18)+32 \quad, \text { for }-18 \leq t \leq .
$$

