2. [11 points]

Let $V(x)$ be a function whose graph is pictured below. It has two pieces - one piece is a linear function and one is an exponential function. Do not assume anything about this function outside of the part shown in the graph below.

Write a piecewise-defined formula for $V(x)$. For this problem you will be graded both on the correctness of your formulas for each piece and on the use of piecewise notation. Circle your final answer for $V(x)$.
Solution: The linear part can be found using the two points given. The slope between them is $\frac{11}{6}$, and with the point $(-7,-5)$, we get that the equation for the linear part is $V(x)=\frac{11}{6}(x+7)-5$.
As for when $V(x)$ is exponential, we can again find the formula using the two points shown. Assuming the general form of $V(x)=a b^{x}$, we have that

$$
\frac{0.125}{4}=\frac{1}{32}=b^{5}
$$

So that $b=\frac{1}{2}$. Now using the point $(1,4)$, we get

$$
a\left(\frac{1}{2}\right)=4
$$

so $a=8$. Hence, $V(x)=8\left(\frac{1}{2}\right)^{x}$ on the exponential piece. Putting them together, we get the piecewise function

$$
V(x)= \begin{cases}\frac{11}{6}(x+7)-5 & \text { for }-7 \leq x<-1 \\ 8\left(\frac{1}{2}\right)^{x} & \text { for } 1 \leq x \leq 6\end{cases}
$$

