3. [10 points]

Below is the graph of a rational function $Q(x)$. Note that

- $Q(x)$ has a horizontal asymptote at $y=0.2$
- $Q(x)$ has zeros at $x=-4$, $x=1$, and $x=3$
- $Q(x)$ has a hole at $x=-2$
- $Q(x)$ has vertical asymptotes at $x=-3, x=-1$, and $x=2$

Using the information in the portion of the graph shown, write a possible formula for $Q(x)$. You do not need to simplify your answer.

Solution: Since there are vertical asymptotes at $x=-3, x=-1$ and $x=2$, we have that we must have $(x+3)(x+1)(x-2)$ in the denominator. Similarly with the zeros, we determine that $(x+4)(x-1)(x-3)$ is in the numerator.
There hole at $x=-2$, but the hole is not a zero. This means that the numerator and the denominator both have equal amounts of $(x+2)$ factors.
Finally, a horizontal asymptote at $y=0.2$ implies that the degrees of both the numerator and denominator agree, and that the fraction of their leading coefficients is 0.2 . Putting it all together, we can construct a possible formula of the form

$$
Q(x)=\frac{0.2(x+4)(x-1)(x-3)(x+2)}{(x+3)(x+1)(x-2)(x+2)}
$$

$$
Q(x)=\xrightarrow{Q(x)=\frac{0.2(x+4)(x-1)(x-3)(x+2)}{(x+3)(x+1)(x-2)(x+2)}}
$$

