5. [4 points]

Let α and β be constants such that

- $\ln (\alpha)=2$
- $\ln (\beta)=5$

Find the value of $\ln \left(\alpha^{6} \beta^{-3} e^{25}\right)$. Your answer should not include α, β, or \ln.
Solution: Using log rules, we can write

$$
\begin{aligned}
\ln \left(\alpha^{6} \beta^{-3} e^{25}\right) & =\ln \left(\alpha^{6}\right)+\ln \left(\beta^{-3}\right)+\ln \left(e^{25}\right) \\
& =6 \ln (\alpha)-3 \ln (\beta)+25 \\
& =12-15+25=22
\end{aligned}
$$

$$
\ln \left(\alpha^{6} \beta^{-3} e^{25}\right)=
$$

\qquad
6. [6 points]

Let $P(x)$ be a polynomial with the following properties:

- $P(x)$ only has zeros at $x=-3,-1,2$
- The graph of $P(x)$ passes through the
- $P(x)$ has degree 4 points $(-4,-36)$ and $(-2,-8)$

Find a formula for $P(x)$. You do not need to simplify your answer.
Solution: $\quad P(x)$ has degree 4 but only has three zeros, so one of them must be a double zero. Note that at $x=-4$ and $x=-2$, the outputs are both negative, yet there is a zero between them. This implies that $x=-3$ must be a double zero, so that our polynomial is of the form

$$
P(x)=c(x+3)^{2}(x+1)(x-2)
$$

where c is some constant. To find c, we can use one of the points, say $(-2,-8)$. Plugging it in, we get

$$
-8=c(-2+3)^{2}(-2+1)(-2-2)=4 c
$$

Hence $c=-2$.

$$
P(x)=\quad-2(x+3)^{2}(x+1)(x-2)
$$

