9. [12 points]
a. 6 points]

While searching for cryptids, Roy claims he found a secret island with crazy thermodynamic properties. According to him, the temperature on the island fluctuates in a 24 hour cycle that can be modeled by a sinusoidal function. The maximum temperature of 45° Celsius occurs at 1 p.m. every day, and the minimum temperature of -25° Celsius occurs at 1 a.m. every day. Let the sinusoidal function $C(t)$ be the temperature, in degrees Celsius, on the island t hours after 8 a.m. Find a formula for $C(t)$.

Solution: Since it fluctuates in a 24 hour cycle, we have that the period of the function is 24. Furthermore, the midline is $y=\frac{45+(-25)}{2}=10$ and the amplitude is $\frac{45-(-25)}{2}=35$. Thus, we have that

$$
C(t)=35 \cos \left(\frac{2 \pi}{24}(t-h)\right)+10
$$

for some shift h. Note that the maximum for our function is at 1 p.m, which is 5 hours after 8 a.m. Since $\cos (t)$ naturally has a maximum at $t=0$, and we want the maximum to be at $t=5$, we want to shift 5 to the right. Therefore, we want $h=5$, giving us

$$
C(t)=35 \cos \left(\frac{2 \pi}{24}(t-5)\right)+10
$$

b. [6 points]

On the island, Roy also claims to have found a population of the elusive Megaconda! In his notes, he writes that it is clear that the population size of Megaconda population must fluctuate in a sinusoidal manner, and that there are $M(t)$ thousand Megacondas t months after his discovery. Let

$$
M(t)=13 \sin \left(\frac{\pi t}{3}\right)+25
$$

Find the first two times after Roy's discovery when the Megaconda population is 18,000 . Give your answers using exact form.
Solution: We set up the equation

$$
18=13 \sin \left(\frac{\pi t}{3}\right)+25
$$

After some algebra, we can write this as

$$
\frac{-7}{13}=\sin \left(\frac{\pi t}{3}\right)
$$

We can then solve for the principal value by taking $\sin ^{-1}$ of both sides, giving us

$$
\sin ^{-1}\left(\frac{-7}{13}\right)=\frac{\pi t}{3}
$$

So

$$
t=\frac{3 \sin ^{-1}\left(\frac{-7}{13}\right)}{\pi}
$$

However, this value is negative, and we want the first two positive t-values.
The first positive value can be found from the principal value using symmetry, giving us

$$
t=3-\frac{3 \sin ^{-1}\left(\frac{-7}{13}\right)}{\pi}
$$

The second positive value can be found by adding the period to the principal value, giving us

$$
t=6+\frac{3 \sin ^{-1}\left(\frac{-7}{13}\right)}{\pi}
$$

From this, we see that the first two times the Megaconda population is 18,000 is $3-$ $\frac{3 \sin ^{-1}\left(\frac{-7}{13}\right)}{\pi}$ and $6+\frac{3 \sin ^{-1}\left(\frac{-7}{13}\right)}{\pi}$ months after Roy's discovery.

