2. [10 points] The parts of this problem are not related.
a. [2 points] If $p(x)$ is a polynomial of degree 5 such that $\lim _{x \rightarrow \infty} p(x)=\infty$ and $\lim _{x \rightarrow-\infty} p(x)=-\infty$, which of the following are possible leading terms of $p(x)$?
Circle all correct options.

| $5 x^{3}$ | $-5 x^{3}$ | $-\frac{1}{2} x^{5}$ | $3 x^{5}$ |
| :--- | :--- | :--- | :--- |$-2 x^{5} \quad \frac{3}{4} x^{5} \quad$ None of these

b. [2 points] If $q(x)$ is a polynomial such that $\lim _{x \rightarrow \infty} q(x)=-\infty$ and $\lim _{x \rightarrow-\infty} q(x)=\infty$, which of the following are possible degrees of $q(x)$?
Circle all correct options.

5	600	-1	755	2	None of these

c. [2 points] Which of the following functions approach 0 as $x \rightarrow-\infty$?

Circle all correct options.

$\frac{x^{2}+8 x^{3}}{x(6+x)(2 x-1)} \quad$| $\frac{e^{x}+3}{x^{2}+1}$ |
| :--- |
| $3^{x}+7$ |\quad| $\frac{1}{\ln (-x)}$ |
| :---: |\quad None of these

d. [2 points] Which of the following functions dominates all the others as $x \rightarrow \infty$? Circle exactly one of the options.

$$
100 x+650 \quad 5 e^{x} \quad \begin{array}{|cccc}
2(3)^{x} & 2(3)^{-x} & 15 x^{4}+x+6 & 75 x^{500}
\end{array}
$$

e. [2 points] If θ is an angle with $\cos (\theta)=a$ for some positive number a, which of the following values must also equal a ? Circle all correct options.

$$
\begin{array}{|c|c}
\hline \cos (2 \pi-\theta) \quad \cos (\pi-\theta) \quad \cos (\pi+\theta) \quad \text { None of these }
\end{array}
$$

