2. [7 points] The amount, in milligrams (mg), of a certain drug in a patient's bloodstream t minutes after it is administered is given by:

$$
V(t)=120 e^{-0.006 t}
$$

a. [2 points] By what percentage does the amount of the drug in the patient's bloodstream decrease each minute? Show all work. Give your answer in exact form, or rounded to at least three decimal places.

$$
100\left(1-e^{-0.006}\right)=0.598 \quad \%
$$

b. [3 points] How long does it take for the amount of the drug in the patient's bloodstream to decrease to 10 mg ? Show all work. Give your answer rounded to the nearest minute.
Solution: We need to solve for the time t at which

$$
120 e^{-0.006 t}=10
$$

Once we are past that time, the drug will be less than 10 mg .

$$
\begin{aligned}
120 e^{-0.006 t} & =10 \\
e^{-0.006 t} & =\frac{1}{12} \\
-0.006 t & =\ln \left(\frac{1}{12}\right) \\
t & =\ln \left(\frac{1}{12}\right) /-0.006 \approx 414
\end{aligned}
$$

$$
\ln \left(\frac{1}{12}\right) /-0.006 \approx 414 \quad \text { minutes }
$$

c. [2 points] The amount, in mg, of a different drug in a patient's bloodstream t minutes after it is administered is given by $G(t)$. Some values of $G(t)$ are given below. Could $G(t)$ be exponential? Show all work.

t, in minutes	20	30	50
$G(t)$, in mg	95	76	48.64

Solution: There are several ways that we could check if this is exponential. One way is to imagine a theoretical output for $t=40$ minutes. If this function were exponential, then the multiplicative increase from $G(20)$ to $G(30)$ should be the same as the multiplicative increase from $G(30)$ to $G(40)$ and from $G(40)$ to $G(50)$. We can compute that the multiplicative increase from $G(20)$ to $G(30)$ is $76 / 95$. If we apply that multiplicative increase to $G(30)=76$ we get $76^{2} / 95$ as a hypothetical value for $G(40)$. If we apply it one more time we get $76^{3} / 95^{2}=48.64$ That is, this is the value we'd expect for $G(50)$ if our function were exponential. Since that is exactly the value for $G(50)$ we see in our table, we can conclude that our function could, in fact, be exponential.

