3. [8 points] The website fueleconomy.gov gives the graph on to the right to show fuel economy (in miles per gallon or mpg) as a function of speed (in miles per hour or mph) for a particular type of car. We'll call the function defined by this graph $h(v)$.
a. [1 point] What can you say about the concavity of $h(v)$ over the domain [10,30]? Circle one answer; no explanation necessary.

Concave Up

Concave Down

Neither

b. [1 point] $h(v)$ is not an invertible function. Explain in 1-2 sentences how we know.

Since the graph does not pass the horizontal line test, it cannot be invertible.
Explanation: That is, there is an output value with two different input values, so the function cannot be inverted.
c. [1 point] If we wanted to restrict the domain of $h(v)$ so that is was an invertible function, what would be a good domain to use?

Domain: \qquad
Another function $c(F)$, which is invertible, gives the cost of gas in dollars per mile when we have a fuel economy of $F \mathrm{mpg}$.
d. [4 points] Write a sentence or phrase that gives the meaning of each of the following equations or expressions. Or, if it does not make sense in context, explain why not.
i. $c(h(80))=0.22$

When this particular car is going 80 miles per hour, the cost of gas is 0.22 dollars per mile.
ii. $c^{-1}(0.18)$

This is the fuel economy (in mpg) when the cost of gas is 0.18 dollars per mile.
e. [1 point] In this context, what is a reasonable domain for $c(F)$? No explanation necessary.

Domain: \qquad
Solution: There are many different ways we could give a reasonable domain for c. One thing we know is that it shouldn't include negative numbers, since a negative fuel economy doesn't make sense. On the other hand, we know that any domain for c should include at least the range of fuel economy we see in the graph of $F=h(v)$. In particular, it should include at least $[11,30]$.

