8. [8 points]
a. [4 points] Sketch a graph of a polynomial $f(x)$ satisfying the following conditions:

- $f(x)$ has zeros at $x=-1,2$, and 4
- the y-intercept is 1
- $\lim _{x \rightarrow-\infty} f(x)=-\infty$
- $f(x)$ is of degree 4

Solution: There are two basic shapes that are possible here. For it to have the limit listed, a zero at $x=-1$, and vertical intercept at $y=1$, then it must have a single zero at $x=-1$. However, for it to be degree four, it must have a multiplicity- 2 zero at either $x=2$ or $x=4$. The graph shown above shows a multiplicity- 2 zero at $x=2$, but the other option is also possible.
b. [4 points] Write a possible formula for the graph of the rational function shown below. For clarity, its features are also described below.

- the y-intercept is $1.5 \quad$ - horizontal asymptote of $y=2$
- the zeros are -3 and 1 .
- vertical asymptotes of $x=-2$ and $x=2$

Solution:

To begin with, since we have zerps of -3 and 1 , we know we have factors of $(x+3)$ and $(x-1)$ in the numerator. Since we have vertical asymptotes at $x=-2$ and $x=2$, we know we have factors of $(x+2)$ and $(x-2)$ in the denominator. As a preliminary function, we have so far:

$$
\frac{(x+3)(x-1)}{(x+2)(x-2)}
$$

However, we still need to account for the vertical intercept and horizontal asymptotes.
We already have "matching degrees" in numerator and denominator, which will give us a non-zero horizontal asympote as desired. However, we want a horizontal asympote of $y=2$, so we need the ratios of the leading coefficients to of numerator and denominator to be 2. We can edit our draft function above to get this:

$$
\frac{2(x+3)(x-1)}{(x+2)(x-2)}
$$

Finally, we should check that we have the right vertical intercept:

$$
\frac{2(0+3)(0-1)}{(0+2)(0-2)}=\frac{-6}{-4}=1.5
$$

So we have met the last criteria as well!

