- **6**. [9 points] Bubble in the blanks for **all possible** correct choices. Use pencil in case you need to change your answer. You do not need to show work for any part of this problem.
 - **a**. Which of the functions below have the property that: $\lim_{x \to \infty} f(x) = \infty$?

Solution: Let's find the limit as $x \to \infty$ of each of the options.

- Since $x^5 \to \infty$ as $x \to \infty$, $\frac{9}{x^5} \to 0$ as $x \to \infty$.
- We have that lim_{x→∞} x⁹⁺⁵/(2^x+x²) = lim_{x→∞} x⁹/(2^x) = 0 since 2^x dominates x⁹ as x → ∞.
 As x → ∞, e^{-x} → 0 but is always positive. Since x² → ∞ and is always positive as $x \to \infty$, we have, $\lim_{x\to\infty} \frac{x^2}{e^{-x}} = +\infty$.
- Both $x^{1/3}$ and $\ln(x)$ go to ∞ as $x \to \infty$. However, $x^{1/3}$ dominates $\ln(x)$, so we still have $\lim_{x\to\infty} \frac{x^{1/3}}{\ln(x)} = \infty$.

b. Which of the following functions have at least one *horizontal* asymptote?

$$\bigcirc f(x) = \log(5x)$$

$$\bigcirc f(x) = \frac{5x^5 - x^2}{x^5 + x^4}$$

$$\bigcirc f(x) = \frac{x^3 + x + 71}{x^2 - 81}$$

$$\bigcirc f(x) = \frac{2}{x^3 - x - 17}$$

$$\bigcirc \text{NONE OF THE ABOVE}$$

Solution:

- $\log(5x)$ only has a vertical asymptote and no horizontal asymptotes.
- Since the numerator and denominator of $\frac{5x^5-x^2}{x^5+x^4}$ are polynomials of the same degree, the function has a horizontal asymptote of 5 (which is the ratio of the leading coefficients of the numerator and denominator).
- $\lim_{x\to\infty} \frac{2}{x^3 x 17} = 0$, so this function has a horizontal asymptote at y = 0.
- $\lim_{x \to -\infty} e^{3x} + 1 = 1$, so this function has a horizontal asymptote at y = 1. $\lim_{x \to \infty} \frac{x^3 + x + 71}{x^2 81} = \lim_{x \to \infty} \frac{x^3}{x^2} = \lim_{x \to \infty} x = \infty$. Similarly, $\lim_{x \to -\infty} \frac{x^3 + x + 71}{x^2 81} = -\infty$. Therefore, this function has no horizontal asymptotes.
- c. Which of the following functions have at least one *vertical* asymptote?

$$\bigcap f(x) = \frac{1}{x-5}$$

Solution:

- $\frac{1}{x-5}$ has a vertical asymptote at x = 5.
- $\frac{x^2(x-1)^2}{(x-1)}$ is undefined at x = 1. However, since x = 1 occurs as a zero with multiplicity 1 in the denominator but multiplicity 2 in the numerator, it is a hole rather than a vertical asymptote. Therefore, this function has no vertical asymptotes.
- $\ln(x) + 5$ has a vertical asymptote at x = 0.
- Since $x^2 + 1$ has no (real) zeros, $\frac{x^2 2x + 5}{x^2 + 1}$ is defined for all real numbers and has no vertical asymptotes.

d. In which of the following equations is y directly proportional to x^2 ?

Solution: We're looking for the options which have the form $y = kx^2$ for some real number k. The only options of this form are $y = 2x^2$ and $y = \frac{\sqrt{7}x^2}{3}$. If $y = \frac{4}{x^2}$, then y is inversely proportional to x^2 , not directly proportional.