11. [9 points] The graphs of functions g and h are shown below.

a. [3 points] Determine whether each of the following statements is True or False.
(i) The function g is invertible on the domain $[1,6]$.

True
False
(ii) The function h is invertible on the domain $[1,6]$.

True False
(iii) The function defined by $g(x)-h(x)$ is an increasing function on the domain $[1,6]$.
b. [2 points] Evaluate $g(h(3))$ and $h(3) g(3)$.

Solution: $\quad g(h(3))=g(2)=3$ and $h(3) g(3)=2 \cdot 4=8$.
Answers: $g(h(3))=\longrightarrow$
$h(3) g(3)=\quad 8$

Some values for an invertible function f are given in the table below.
Use the table together with the graphs of g and h above to answer the questions that follow.

x	0	1	3	5	6
$f(x)$	1	3	4	6	8

c. [2 points] Evaluate $f^{-1}(g(2))$.

Solution: $\quad f^{-1}(g(2))=f^{-1}(3)=1$.
Answer: $f^{-1}(g(2))=$ \qquad
d. [2 points] If j is the function defined by $j(x)=2 f(x+1)$, evaluate $j(4)$.

Solution: $\quad j(4)=2 f(4+1)=2 f(5)=2(6)=12$.

Answer: $j(4)=$ \qquad

