3. [15 points] Show your work.
a. [3 points] Find an equation for the straight line passing through the point $(2,-3)$ that is perpendicular to the line passing through the points $(1,4)$ and $(-6,5)$.
Solution: The slope of the line passing through $(1,4)$ and $(-6,5)$ is $\frac{5-4}{-6-1}=-\frac{1}{7}$, so the slope of a line perpendicular to it is 7 . Using point-slope form, we therefore find that $y+3=7(x-2)$ describes the perpendicular line passing through the point $(2,-3)$.

$$
\text { Answer: } y=7(x-2)-3 \text { or }-17+7 x
$$

b. [3 points] A population of ants is growing by 25% per day. How long will it take for the number of ants to double? (Give your answer in exact form or rounded accurately to three decimal places.)

Solution: The population can be modeled by an exponential function of the form $a(1.25)^{t}$ where t is measured in days and a is the population on day $t=0$. If d is the doubling time, then $2 a=a(1.25)^{d}$ so $2=1.25^{d}$. Solving for d we have $\ln 2=d \ln 1.25$ so $d=\frac{\ln 2}{\ln 1.25} \approx 3.106$.

$$
\text { Answer: } \quad d=\frac{\ln 2}{\ln 1.25} \approx 3.106 \text { days }
$$

c. [3 points] An ant begins at the point $(1,0)$ and walks counterclockwise along the unit circle for a distance of 2 units and then stops. What are the coordinates of the point at which the ant stops? (Give your answer in exact form.)
Solution: On the unit circle, a distance of 2 units corresponds to an angle of 2 radians, so this counterclockwise walk starts at $(1,0)$ and ends at the point $(\cos 2, \sin 2)$.

Answer: $\quad(\cos 2, \sin 2)$
d. [3 points] Suppose the graph of $y=h(x)$ is obtained from the graph of $y=3 e^{2 x}$ by shifting the graph of $y=3 e^{2 x}$ to the right four units and then down five units. Find a formula for $h(x)$.
Solution: Let $f(x)=3 e^{2 x}$. Then $h(x)=f(x-4)-5=3 e^{2(x-4)}-5$.
Answer: $h(x)=3 e^{2(x-4)}-5$
e. [3 points] Find the exact value of t if $5 e^{t}=15\left(2^{t}\right)$. (Show each step of your work carefully.)

Solution: First, we divide both sides of the given equation by 5 to obtain $e^{t}=3\left(2^{t}\right)$. Using logarithms, we then find $\ln \left(e^{t}\right)=\ln \left(3\left(2^{t}\right)\right)$ so $t=\ln (3)+\ln \left(2^{t}\right)=\ln 3+t \ln 2$. Collecting the terms involving t, we find $t-t \ln 2=\ln 3$. We can then pull out the common factor t on the left side to find $t(1-\ln 2)=\ln 3$ and then divide to obtain the solution $t=\frac{\ln 3}{1-\ln 2}$.

Answer: $t=\frac{\ln 3}{1-\ln 2}$

