5. [6 points] Let g be the function defined by

$$g(x) = \frac{10(x-1)(x-2)}{(2x+1)(x^2+2x-1)}.$$

Find all zeros, y-intercepts, and horizontal and vertical asymptotes of the graph of y = g(x). If appropriate, write "NONE" in the answer blank provided. (Show your work and write your answers in exact form.)

Solution: Note that the numerator and denominator have no common factors.

The zeros of g(x) are the zeros of 10(x-1)(x-2) which are x=1 and x=2.

zero(s):
$$\underline{\qquad x=1 \text{ and } x=2}$$

The y-intercept of
$$g(x)$$
 is $g(0) = \frac{10(0-1)(0-2)}{(2(0)+1)(0^2+2(0)-1)} = \frac{20}{-1} = -20$.

$$y$$
-intercept(s): ______

As $x \to \pm \infty$ the numerator and denominator of g(x) behave like their leading terms, so as $x \to \pm \infty$, the rational function g(x) behaves like $\frac{10x^2}{2x^3} = \frac{5}{x}$ which approaches 0 as $x \to \pm \infty$. Therefore, y = 0 is a horizontal asymptote of the graph of y = g(x).

horizontal asymptote(s):
$$y = 0$$

The vertical asymptotes of g(x) are determined by the zeros of the denominator, i.e. the solutions to $(2x+1)(x^2+2x-1)=0$ which are the solution of 2x+1=0 along with the solutions of $x^2+2x+1=0$. The solution of 2x+1=0 is x=-1/2 and by applying the quadratic formula, we see that the solutions of $x^2+2x-1=0$ are $x=\frac{-2\pm\sqrt{2^2-4(1)(-1)}}{2(1)}=\frac{-2\pm\sqrt{8}}{2}=-1\pm\sqrt{2}$. So the graph of y=g(x) has three vertical asymptotes: x=-1/2, $x=-1+\sqrt{2}$ and $x=-1-\sqrt{2}$.

vertical asymptote(s):
$$x = -1/2$$
, $x = -1 + \sqrt{2}$, and $x = -1 - \sqrt{2}$

6. [5 points] Find all solutions to the equation $5\sin(2t) = -\pi$ for $0 \le t \le \pi$. (Show your work clearly and give your final answer(s) in exact form.)

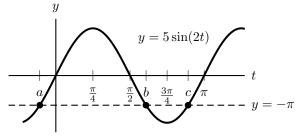
Solution:

We first find one solution to the given equation. Since $5\sin(2t) = -\pi$ we have $\sin(2t) = -\pi/5$. Then one solution is given by $2t = \arcsin(-\pi/5)$, i.e. $t = \frac{1}{2}\arcsin\left(-\frac{\pi}{5}\right)$. To find all solutions in the domain $[0,\pi]$, we consider the graph of $y = 5\sin(2t)$ (shown to the right). The graph intersects the line $y = -\pi$ at two points for $0 \le t \le \pi$. These two points of intersection give the solutions b and c marked on the t-axis. These are the solutions we are looking for. The solution we found algebraically is marked a on the t-axis.

From the graph, we see that c is exactly one period after a, that is $c = \pi + a$.

Using symmetry, we find that $b = \frac{\pi}{2} - a$. (There are many ways to see this. For example, note that $\frac{3\pi}{4}$

We first find one solution to the given equation. is halfway between b and c. Therefore $\frac{b+c}{2} = \frac{3\pi}{4}$ Since $5\sin(2t) = -\pi$ we have $\sin(2t) = -\pi/5$. so $b = \frac{3\pi}{2} - c = \frac{3\pi}{2} - (\pi + a) = \frac{\pi}{2} - a$.) Hence Then one solution is given by $2t = \arcsin(-\pi/5)$, the two solutions to the equation $5\sin(2t) = -\pi$ i.e. $t = \frac{1}{2}\arcsin(-\frac{\pi}{5})$. To find all solutions for $0 \le t \le \pi$ are $t = \pi + \frac{1}{2}\arcsin(-\frac{\pi}{5})$ and in the domain $[0,\pi]$, we consider the graph of $t = \frac{\pi}{2} - \frac{1}{2}\arcsin(-\frac{\pi}{5})$.



Answer(s):
$$t = \pi + \frac{1}{2}\arcsin\left(-\frac{\pi}{5}\right) \text{ and } t = \frac{\pi}{2} - \frac{1}{2}\arcsin\left(-\frac{\pi}{5}\right)$$