5. [6 points] Let g be the function defined by

$$
g(x)=\frac{10(x-1)(x-2)}{(2 x+1)\left(x^{2}+2 x-1\right)} .
$$

Find all zeros, y-intercepts, and horizontal and vertical asymptotes of the graph of $y=g(x)$. If appropriate, write "NONE" in the answer blank provided.
(Show your work and write your answers in exact form.)
Solution: Note that the numerator and denominator have no common factors.
The zeros of $g(x)$ are the zeros of $10(x-1)(x-2)$ which are $x=1$ and $x=2$.

$$
\text { zero(s): } \quad x=1 \text { and } x=2
$$

The y-intercept of $g(x)$ is $g(0)=\frac{10(0-1)(0-2)}{(2(0)+1)\left(0^{2}+2(0)-1\right)}=\frac{20}{-1}=-20$.

$$
y \text {-intercept(s): }
$$

\qquad
As $x \rightarrow \pm \infty$ the numerator and denominator of $g(x)$ behave like their leading terms, so as $x \rightarrow \pm \infty$, the rational function $g(x)$ behaves like $\frac{10 x^{2}}{2 x^{3}}=\frac{5}{x}$ which approaches 0 as $x \rightarrow \pm \infty$. Therefore, $y=0$ is a horizontal asymptote of the graph of $y=g(x)$.

$$
\text { horizontal asymptote(s): } \quad y=0
$$

The vertical asymptotes of $g(x)$ are determined by the zeros of the denominator, i.e. the solutions to $(2 x+1)\left(x^{2}+2 x-1\right)=0$ which are the solution of $2 x+1=0$ along with the solutions of $x^{2}+2 x+1=0$. The solution of $2 x+1=0$ is $x=-1 / 2$ and by applying the quadratic formula, we see that the solutions of $x^{2}+2 x-1=0$ are $x=\frac{-2 \pm \sqrt{2^{2}-4(1)(-1)}}{2(1)}=\frac{-2 \pm \sqrt{8}}{2}=-1 \pm \sqrt{2}$. So the graph of $y=g(x)$ has three vertical asymptotes: $x=-1 / 2, x=-1+\sqrt{2}$ and $x=-1-\sqrt{2}$.

$$
\text { vertical asymptote(s): } \quad x=-1 / 2, x=-1+\sqrt{2}, \text { and } x=-1-\sqrt{2}
$$

6. [5 points] Find all solutions to the equation $5 \sin (2 t)=-\pi$ for $0 \leq t \leq \pi$.
(Show your work clearly and give your final answer(s) in exact form.)

Solution:

We first find one solution to the given equation. Since $5 \sin (2 t)=-\pi$ we have $\sin (2 t)=-\pi / 5$. Then one solution is given by $2 t=\arcsin (-\pi / 5)$, i.e. $\quad t=\frac{1}{2} \arcsin \left(-\frac{\pi}{5}\right)$. To find all solutions in the domain $[0, \pi]$, we consider the graph of $y=5 \sin (2 t)$ (shown to the right). The graph intersects the line $y=-\pi$ at two points for $0 \leq t \leq \pi$. These two points of intersection give the solutions b and c marked on the t-axis. These are the solutions we are looking for. The solution we found algebraically is marked a on the t-axis.
From the graph, we see that c is exactly one period after a, that is $c=\pi+a$.
Using symmetry, we find that $b=\frac{\pi}{2}-a$. (There are
is halfway between b and c. Therefore $\frac{b+c}{2}=\frac{3 \pi}{4}$ so $b=\frac{3 \pi}{2}-c=\frac{3 \pi}{2}-(\pi+a)=\frac{\pi}{2}-a$.) Hence the two solutions to the equation $5 \sin (2 t)=-\pi$ for $0 \leq t \leq \pi$ are $t=\pi+\frac{1}{2} \arcsin \left(-\frac{\pi}{5}\right)$ and $t=\frac{\pi}{2}-\frac{1}{2} \arcsin \left(-\frac{\pi}{5}\right)$.
 many ways to see this. For example, note that $\frac{3 \pi}{4}$

$$
\text { Answer(s): } \underline{t=\pi+\frac{1}{2} \arcsin \left(-\frac{\pi}{5}\right) \text { and } t=\frac{\pi}{2}-\frac{1}{2} \arcsin \left(-\frac{\pi}{5}\right)}
$$

