8. [5 points] A portion of the graph of a polynomial function $p$ is shown below.

Find a possible formula for $p(x)$.
(Assume all of the key features of the graph are shown.)


Solution: The zeros of $p(x)$ are $x=-4, x=1$, and $x=4$. Note that $x=-4$ is a double (or other positive even power) zero while $x=1$ and $x=4$ appear to be simple zeros. So a possible formula for $p(x)$ is $p(x)=a(x+4)^{2}(x-1)(x-4)$ for some (negative) constant $a$. Using the $y$-intercept, we see that $-12=a(0+4)^{2}(0-1)(0-4)$, so $a=-12 / 64=-3 / 16$.

Answer: $p(x)=\underline{-\frac{3}{16}(x+4)^{2}(x-1)(x-4)}$
9. [4 points] Suppose $g$ is a power function such that $g(1)=4$ and $g(10)=1$.

Find a formula for $g(x)$. (Any numbers in your formula should be in exact form.)
Solution: Since $g$ is a power function there are constants $k$ and $p$ so that a formula for $g(x)$ is $g(x)=k x^{p}$. Using the given data, we have $4=k\left(1^{p}\right)$ so $4=k$. Then $1=k\left(10^{p}\right)=4\left(10^{p}\right)$. Solving for $p$ we have

$$
\begin{aligned}
4\left(10^{p}\right) & =1 \\
10^{p} & =\frac{1}{4} \\
\log \left(10^{p}\right) & =\log (1 / 4) \\
p & =-\log 4
\end{aligned}
$$

Hence a formula for $g(x)$ is $g(x)=4 x^{-\log 4}$ (which can also be written as $\frac{4}{x^{\log 4}}$ or $4 x^{\log 0.25}$ ). Check: $g(1)=4\left(1^{-\log 4}\right)=4(1)=4$ and $g(10)=4\left(10^{-\log 4}\right)=\frac{4}{10^{\log 4}}=\frac{4}{4}=1$ as required.

Answer: $g(x)=$ $\qquad$

