1. [13 points] Consider the functions \(f(x) \) and \(g(x) \), where \(g(x) = 2 - \frac{1}{2}x \) and the graph of \(y = f(x) \) is shown below.

![Graph of y = f(x)](image)

a. [9 points]
 i) Compute the value of the following expressions. Write "Undefined" if the value of the expression is not defined or there is not enough information to be computed.

 \[
 \begin{align*}
 Solution: \quad 2f(-2) + 3f(4) &= 2(5) + 3(-2) = 4 \quad f^{-1}(3) = 2 \\
 f(g(2)) &= f(2 - 0.5(2)) = f(1) = 3.5 \quad g(g^{-1}(5)) = 5
 \end{align*}
 \]

 ii) Find the horizontal and vertical intercepts of the function \(y = f(g(x)) \).

 Solution:
 \[\text{Horizontal intercept: If } f(g(x)) = 0 \text{ then } g(x) = 3. \text{ Hence } 2 - \frac{1}{2}x = 3 \text{ then } x = -2. \text{ Hence the horizontal intercept is at } (-2,0).\]
 \[\text{Vertical intercept: } y = f(g(0)) = f(2) = 3. \text{ Hence the vertical intercept is at } (0,3).\]

 iii) Find the average rate of change of \(f(x) \) between \(x = 2 \) and \(x = 5 \). Show your work.

 Solution: Average rate of change of \(f(x) = \frac{f(5) - f(2)}{5 - 2} = \frac{-4 - 3}{3} = -\frac{7}{3} \).

b. [4 points] Find a piecewise defined formula for \(f(x) \).

 Solution:
 \[
 f(x) = \begin{cases}
 4 - \frac{1}{2}x & \text{if } -4 \leq x \leq 2 \\
 -2x + 6 & \text{if } 2 < x \leq 5
 \end{cases}
 \]