10. [8 points]
a. [4 points] Let $y=f(x)=3 \log \left(\frac{1+2 x}{x+3}\right)$. Find a formula for $f^{-1}(y)$. Show all your work carefully.

Solution:

$$
\begin{aligned}
y & =3 \log \left(\frac{1+2 x}{x+3}\right) \\
\frac{y}{3} & =\log \left(\frac{1+2 x}{x+3}\right) \\
10^{\frac{y}{3}} & =\frac{1+2 x}{x+3} \\
10^{\frac{y}{3}}(x+3) & =1+2 x \\
10^{\frac{y}{3}} x+3\left(10^{\frac{y}{3}}\right) & =1+2 x \\
\left(10^{\frac{y}{3}}-2\right) x & =1-3\left(10^{\frac{y}{3}}\right) \\
f^{-1}(y) & =\frac{1-3\left(10^{\frac{y}{3}}\right)}{10^{\frac{y}{3}}-2} .
\end{aligned}
$$

b. [4 points] Find all solutions to $3 \cos \left(\frac{t}{2}\right)+2=0$ for $0 \leq t \leq 4 \pi$ algebraically. Show all your work carefully. Your answer(s) must be in exact form.

Solution:

$$
\begin{aligned}
& 3 \cos \left(\frac{t}{2}\right)+2=0 \\
& \cos \left(\frac{t}{2}\right)=-\frac{2}{3} \\
& \frac{t}{2}=\cos ^{-1}\left(-\frac{2}{3}\right) \cdot \\
& t_{1}=2 \cos ^{-1}\left(-\frac{2}{3}\right), \quad t_{2}=4 \pi-2 \cos ^{-1}\left(-\frac{2}{3}\right)
\end{aligned}
$$

