4. [12 points]
a. [4 points] The graph of a polynomial $p(x)$ is shown below. The following facts are known about $p(x)$:
i) The only zeros of $p(x)$ are $x=-2$ and $x=3$.
ii) The degree of $p(x)$ is at most four.
iii) The point $(1,9)$ is on the graph of $p(x)$.

Find a formula for $p(x)$.

Solution: The polynomial $p(x)$ has degree 3 given the long behavior in the graph. From the graph, we can see that $x=-2$ is a double zero. Hence $p(x)=k(x+2)^{2}(x-3)$. Since the point $(1,9)$ is on the graph of $p(x)$, then $9=k\left(3^{2}\right)(-2)=-18 k$. Hence $k=-0.5$. Then $p(x)=-0.5(x+2)^{2}(x-3)$.
b. [5 points] Let

$$
R(x)=\frac{\left(x^{2}+9\right)(10 x+1)}{7 x^{3}-x}
$$

Find all the intercepts and all horizontal and vertical asymptotes of the graph $y=R(x)$. If appropriate, write "None" in the answer blank provided. Your answers should be in exact form.

Solution:

i) x-intercept(s): Set $\left(x^{2}+9\right)(10 x+1)=0$. Then $x^{2}+9=0$ (has no solutions) and $10 x+1=0$ implies $x=-0.1$.
ii) y-intercept(s): Since $R(0)$ is undefined, then $y=R(x)$ has no y-intercepts.
iii) vertical asymptote(s): Set $7 x^{3}-x=0$, then $x\left(7 x^{2}-1\right)=0$ which yields $x=0$ and $\mathbf{x}= \pm \frac{1}{\sqrt{7}}$
iv) horizontal $\operatorname{asymptote}(\mathrm{s}): y=\frac{10}{7}$.
c. [3 points] A law of physics states that the force F (in Newtons) exerted between two objects is inversely proportional to the square of the distance r (in meters) between them, and $F=30$ when $r=7$. Find a formula for F in terms of r.

Solution: Since F is inversely proportional to r^{2}, then $F(r)=\frac{k}{r^{2}}$. Using $F(7)=30$, we get $k=(30)(7)^{2}=1,470$. Hence $F(r)=\frac{1470}{r^{2}}$.

