5. [11 points] A package is thrown from an airplane. The height of the package (in meters) above the ground t seconds after it was thrown from the airplane is given by the function

$$
H(t)=-5 t^{2}-10 t+160
$$

a. [2 points] What is the height of the airplane at the time in which the package is thrown? Include units.

Height=

Solution: Height $=H(0)=160$ meters.
b. [3 points] How many seconds does it take for the package to be 10 meters above the ground? Find your answer algebraically. Show all your work.

Solution: Solve $H(t)=10$. In this case $-5 t^{2}-10 t+160=10$, or $-5 t^{2}-10 t+150=0$. Using the quadratic formula

$$
t=\frac{10 \pm \sqrt{100-4(-5)(150)}}{-10}=\frac{10 \pm \sqrt{3100}}{-10}=-1 \pm \sqrt{31} .
$$

It takes $-1+\sqrt{31} \approx 4.56$ seconds for the package to be 10 meters above the ground.
c. [2 points] What is the range of the function $y=H(t)$ in the context of this problem? Give your answer using either interval notation or inequalities.

Solution: The values of $H(t)$ that are relevant in the context of this problem are the height of the package from the moment it is thrown from the airplane until it hits the ground, $0 \leq y \leq 160$.
d. [4 points] Another package is released from an airplane at a higher altitude. In this case, the downward velocity $V(t)$ (in meters per second) of the package t seconds after it was released is given by the function

$$
V(t)=50-50 e^{-0.2 t}
$$

How long does it take for the package to have a downward velocity of 30 meters per second? Find your answer algebraically. Show all your work step by step. Your answer must be in exact form.
Solution:

$$
\begin{aligned}
50-50 e^{-0.2 t} & =30 \\
e^{-0.2 t} & =\frac{2}{5} \\
-0.2 t & =\ln \left(\frac{2}{5}\right) \\
t & =-5 \ln \left(\frac{2}{5}\right)
\end{aligned}
$$

