8. [9 points]
a. [4 points] A population of butterflies in a botanical garden has been found to oscillate sinusoidally. The population of butterflies reaches a maximum of 2000 butterflies followed by a minimum of 750 butterflies two months later. Let $B(t)$ be the amount of butterflies in the botanical garden at time t (in months). Find the amplitude, midline and period of the periodic function $y=B(t)$.

Amplitude: \qquad .
Period: \qquad
Midline: \qquad -.

Solution:

Amplitude $=\frac{2000-(750)}{2}=625 . \quad$ Midline: $y=\frac{2000+(750)}{2}=1375$
Period $=4$ (months).
b. [5 points] The graph of a sinusoidal function $y=S(x)$ is shown below. Find a formula for $S(x)$.

Solution: Amplitude $=\frac{5-(-3)}{2}=4 . \quad$ Midline: $y=\frac{5+(-3)}{2}=1 \quad$ Period $=6$.
Four possible solutions (among many others):

$$
\begin{aligned}
& \bullet y=4 \sin \left(\frac{2 \pi}{6}(x+2.5)\right)+1=4 \sin \left(\frac{\pi}{3}(x+2.5)\right)+1 \\
& \bullet y=-4 \sin \left(\frac{2 \pi}{6}(x-0.5)\right)+1=-4 \sin \left(\frac{\pi}{3}(x-0.5)\right)+1 \\
& \bullet y=4 \cos \left(\frac{2 \pi}{6}(x+1)\right)+1=4 \cos \left(\frac{\pi}{3}(x+1)\right)+1 \\
& \bullet y=-4 \cos \left(\frac{2 \pi}{6}(x-2)\right)+1=-4 \cos \left(\frac{\pi}{3}(x-2)\right)+1
\end{aligned}
$$

