3. [11 points]
a. [4 points] A store sells bananas. For an order of less than 30 pounds of bananas, the store charges 45 cents per pound of bananas. On a purchase of 30 pounds or more, the store charges 34 cents per pound of bananas plus an additional fee of 3.30 dollars for packaging costs. A minimum of one pound of bananas is required on every purchase. Let $C(x)$ be the cost (in dollars) of buying x pounds of bananas. Find a formula for $C(x)$ as a piecewise-defined function.

Solution:

$$
C(x)=\left\{\begin{array}{lll}
0.45 x & \text { for } & 1 \leq x<30 \\
3.30+0.34 x & \text { for } & 30 \leq x
\end{array}\right.
$$

b. [7 points] There is a fire in the forest. The amount of forest burnt (in km^{2}) increases exponentially at a continuous growth rate of 40 percent per hour. Authorities estimate that $12 \mathrm{~km}^{2}$ of forest were burnt half an hour after the fire started. Let $B(t)$ be the total area burnt by the fire (in km^{2}) t hours after the fire started.
i) Find a formula formula for $B(t)$. Your formula has to be written in exact form.

Solution: The function $B(t)=a e^{0.4 t}$ satisfies $B(0.5)=12$, then

$$
\begin{gathered}
12=a e^{0.2} \\
a=\frac{12}{e^{0.2}}
\end{gathered}
$$

Then $B(t)=\frac{12}{e^{0.2}} e^{0.4 t}=12 e^{0.4 t-0.2}$.
ii) What is the hourly percent rate at which the fire burns the forest? Your answer must be written in exact form or accurate up to the first three decimals.

Solution: \quad Since $b=e^{0.4}=1+r$, then $r=e^{0.4}-1 \approx .492\left(\right.$ or $100\left(e^{0.4}-1\right) \approx 49.182$ percent).
iii) What is the doubling time of the function $B(t)$? Your answer must be found algebraically and written in exact form. Show all your work.

Solution:

$$
\begin{aligned}
2 a & =a e^{0.4 t} \\
e^{0.4 t} & =2 \\
t & =\frac{1}{0.4} \ln 2 \text { hours }
\end{aligned}
$$

