5. [15 points] Consider the functions f(x), g(x) and j(x) given by the tables below

x	-1	1	3	5
f(x)	11.1	6.5	4.1	3
g(x)	2.4	1.7	1	0.3
j(x)	0.25	0.5	1	2

Assume that all the functions above are invertible.

a. [2 points] Which function(s) could be concave up? Circle all possible answers.

Solution:
$$f(x)$$
 $g(x)$ $j(x)$ None of these

b. [2 points] Which function(s) could be a linear function? Circle all possible answers.

Solution:
$$f(x)$$
 $g(x)$ $j(x)$ None of these

c. [2 points] Which function(s) could be an exponential function? Circle all possible answers.

Solution:
$$f(x)$$
 $g(x)$ $j(x)$ None of these

d. [4 points] Compute the value of the following quantities. If there is not enough information to compute the values write "Undefined".

Solution:
$$g(f^{-1}(3)) = g(5) = 0.3$$
 $(j(g(3)))^{-1} = (j(1))^{-1} = (0.5)^{-1} = 2$

e. [3 points] Let $Q(t) = 3t^2 + 1$ and h be a constant. Find a simplified formula for $\frac{Q(t+h) - Q(t)}{h}$. Your answer may depend on t and h.

Solution:

$$\frac{Q(t+h) - Q(t)}{h} = \frac{3(t+h)^2 + 1 - (3t^2 + 1)}{h} = \frac{6th + 3h^2}{h} = 6t + 3h^2$$

f. [2 points] Let $H(x) = \cos(1 + 2\log(x))$ and $G(x) = \log(x)$. Find a function F(x) such that H(x) = F(G(x)).

Solution:
$$F(x) = \cos(1+2x)$$