9. [14 points]

a. [7 points] A mass is attached to the top of a ceiling by a spring. The height of the mass above the ground oscillates from a minimum of 1.2 meters to a maximum of 2.5 meters. Let f(t) be the height of the mass above the ground, in meters, at time t measured in seconds. Some of the values of the function f(t) are shown below

	0				
f(t)	1.65	2.38	2.38	1.65	1.2

Note: All the values in the table are rounded to the nearest 0.01. Suppose f(t) is a sinusoidal function.

i) Find the period, amplitude and midline of y = f(t).

Period=	Amplitude=	Midline:

ii) Find a formula for f(t).

$$f(t) = \underline{\qquad}$$

$$4 - 5\sin\left(\frac{\pi}{x} - \frac{\pi}{x}\right) = 2 \text{ for } 0 \le x \le 5. \text{ Your answers mu}$$

b. [7 points] Find all solutions to $4-5\sin\left(\frac{\pi}{2}x-\frac{\pi}{6}\right)=2$ for $0 \le x \le 5$. Your answers must be found algebraically and in **exact** form.