1. [9 points]
a. [3 points] Let T be the temperature in ${ }^{\circ} \mathrm{F}$ at a distance L feet away from a bonfire. It is known that for $1 \leq L \leq 3$, the temperature T is inversely proportional to the cube root of the distance L to the bonfire. Find a formula for T in terms of L if the temperature at 2 feet away from the bonfire is $125^{\circ} \mathrm{F}$.

Solution: We know that $T=\frac{k}{L^{\frac{1}{3}}}$. Since $T(2)=125=\frac{k}{2^{\frac{1}{3}}}$, then $k=125 \sqrt[3]{2}$. Hence $T=\frac{125 \sqrt[3]{2}}{L^{\frac{1}{3}}}$.
b. [6 points] The graph of a polynomial $f(x)$ of degree five is shown below.

Solution:
i) Find the zeros of $f(x): x=-2,0$ and 3 .
ii) Find a formula for $f(x)$:

Using the zeros and the graph, we can say that $f(x)=k x(x+2)^{2}(x-3)^{2}$. Since $f(2)=-2)$, then $-2=k 2(4)^{2}(1)^{2}$. This yields $k=-\frac{1}{16}$. Hence
$f(x)=-\frac{1}{16} x(x+2)^{2}(x-3)^{2}$.

