2. [11 points]
a. [2 points] Let $f(x)=\frac{3 x^{2}}{10 x^{2}+x+1}+5$. Find the equation of the horizontal asymptote of the graph of $f(x)$. If the graph has no horizontal asymptote, write "None".

Solution: Horizontal asymptote: $y=5.3$.
b. [2 points] For which of the following values of x is the function $f(x)=\sin (x)$ invertible? Circle all that apply.
$\begin{aligned} & \text { Solution: } \\ & \text { of these. } \\ & \text { 而 } \leq x \leq \frac{3 \pi}{2}\end{aligned} 0 \leq x \leq \pi \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \quad 0 \leq x \leq 2 \pi \quad$ None
c. [3 points] Find the equations of the vertical asymptotes and the x coordinate(s) of the
hole(s) of the function $f(x)=\frac{(x-2)(x-3)}{2 x^{2}-5 x+2}$.
Write "None" if the graph of this function does not have a hole or a vertical asymptote. Show all your work.

Solution: The zeros in the denominator can be found by solving $2 x^{2}-5 x+2=0$. Using quadratic formula

$$
x=\frac{5 \pm \sqrt{25-4(2)(2)}}{4} \quad x=2,0.5 .
$$

Vertical asymptotes: $x=0.5 \quad$ Holes: $x=2$.
d. [4 points] Fill in the blanks:
i) Let $r(x)=\left(x^{4}-5\right)^{4}$. If with $r(x)=H(G(x))$ with $H(x)=x^{4}$, then

$$
G(x)=
$$

ii) Let $k(x)=2 e^{2 x+1}$. If $k(x)=F(2 x)$ then $F(x)=$ \qquad

Solution: $\quad G(x)=x^{4}-5$ and $F(x)=2 e^{x+1}$

