3. [9 points]
a. [4 points] A residential community started a paper recycling program in 2002. According to their records, the community recycled 4000 and 12000 lbs of paper in 2005 and 2013, respectively. Let $P(t)$ be the amount of paper recycled by this community (in lbs) t years after 2002. Find a formula for $P(t)$ if you assume that it is a power function. Your answer must be written in exact form.

Solution: Since $P(t)=k t^{p}$ then

$$
\begin{aligned}
k\left(3^{p}\right) & =4000 \quad k\left(11^{p}\right)=12000 . \\
\left(\frac{11}{3}\right)^{p} & =3 . \\
p \ln \left(\frac{11}{3}\right) & =\ln (3) \quad p=\frac{\ln (3)}{\ln \left(\frac{11}{3}\right)} \\
k & =\frac{4000}{3^{\frac{\ln (3)}{\ln \left(\frac{11}{3}\right)}}}=(4000) 3^{-\frac{\ln (3)}{\ln \left(\frac{11}{3}\right)}} .
\end{aligned}
$$

Hence $P(t)=(4000) 3^{-\frac{\ln (3)}{\ln \left(\frac{11}{3}\right)}} t^{\frac{\ln (3)}{\ln \left(\frac{11}{3}\right)}}$.
b. [5 points] Let $W(t)$ be the water consumption of the residential community, in millions of gallons, t years after 2005. The table below shows some values of $W(t)$

t	2	5	8
$W(t)$	5.38	10.51	20.52

Note: The values in the table have been rounded to the nearest 0.01.
Assume that the function $W(t)$ increases exponentially. Your answers should be written in exact form or round your answers to the nearest 0.01 .
i) What is the annual percent rate of the function $W(t)$? Show all your work.

Solution: Since $W(t)=a b^{t}$, then $\frac{W(5)}{W(2)}=\frac{a b^{5}}{a b^{2}}=b^{3}=\frac{10.51}{5.38}$.
Then $b=\sqrt[3]{\frac{10.51}{5.38}} \approx 1.25$ and $r=b-1=\sqrt[3]{\frac{10.51}{5.38}}-1 \approx 0.25$.
ii) What is the annual continuous rate of $W(t)$?

Solution: $\quad k=\ln (b)=\ln \left(\sqrt[3]{\frac{10.51}{5.38}}\right) \approx 0.22$.

