4. [13 points]
 a. [6 points] Two companies, Altor and Bear, decide to invest in Cease, a small start up company, in January 2014. Let \(A(m) \) and \(B(m) \) be the money invested in Cease, in thousands of dollars, \(m \) months after January 2014 by Altor and Bear, respectively.

 i) Find a formula for \(I(y) \), the amount of money, in thousands of dollars, invested by Alton and Bear on Cease \(y \) years after January 2014.

 \[
 \text{Solution:} \quad A(12y) + B(12y)
 \]

 ii) Assume that only Alton and Bear invest in Cease. Find a mathematical expression that represents the fraction of the money invested in Cease by Alton in March 2014.

 \[
 \text{Solution:} \quad \frac{A(2)}{A(2) + B(2)}.
 \]

 b. [7 points] A patient has a high fever and goes to a hospital. At the hospital, the patient receives a fever reducing medication intravenously to reduce his body temperature.

 • Let \(F(s) \) be the amount of medication (in milligrams) in the patient’s body \(s \) minutes after the medication was administered.

 • Let \(G(s) \) be the patient body’s temperature (in \(^\circ \text{F} \)) \(s \) minutes after the medication was administered.

 Assume that the functions \(F \) and \(G \) are invertible. Find practical interpretation of the following mathematical expressions:

 i) \(G(100) = 105 \)

 \[
 \text{Solution:} \quad \text{The patient body’s temperature is } 105^\circ \text{F one hundred minutes after the medication was administered.}
 \]

 ii) \(F^{-1}(100) \)

 \[
 \text{Solution:} \quad \text{The number of minutes after the medication was administered at which the patient has 100 milligrams of medication in his body.}
 \]

 iii) \(F(G^{-1}(100)) \)

 \[
 \text{Solution:} \quad \text{The amount of medication in the patient’s body when his body temperature is } 100^\circ \text{F.}
 \]