- **6**. [12 points]
 - a. [2 points] Let f(x) be an odd function whose domain is all real numbers except x=3 and x=-3. Suppose that $\lim_{x\to 3^+} f(x)=\infty$ and $\lim_{x\to \infty} f(x)=-3$. Compute the following limits. Write "NI" if not enough information has been provided to answer the question.

Solution:
$$\lim_{x \to -\infty} f(x) = 3$$
 $\lim_{x \to -3^-} f(x) = -\infty$

b. [2 points] Which of the following functions dominates the other functions as $x \to \infty$? Circle your answer.

Solution:
$$y = 20x^{500}$$
 $y = 4(1.05)^x$ $y = 1000 \log(x)$ $y = 2e^{0.05x}$.

c. [2 points] Fill in the blank space. Your answer may depend on the constant B.

If B is a constant, then
$$\frac{3^x + Bx^2}{4x^2 + Bx + 10^x} \longrightarrow \frac{B}{4}$$
 as $x \longrightarrow -\infty$.

Solution:

- **d.** [6 points] Consider the function $y = h(x) = 2 + 3\log(4x + 10)$ with domain $x \ge 0$.
 - i) What is the range of h(x) given that its domain is $x \ge 0$? Your answer must be written using interval notation or inequalities.

Solution: Range of
$$h(x)$$
: $[5, \infty)$

ii) Find a formula for $h^{-1}(y)$.

Solution:

$$y = 2 + 3\log(4x + 10)$$

$$y - 2 = 3\log(4x + 10)$$

$$\frac{y - 2}{3} = \log(4x + 10)$$

$$4x + 10 = 10^{\frac{y - 2}{3}}$$

$$4x = 10^{\frac{y - 2}{3}} - 10$$

$$x = \frac{10^{\frac{y - 2}{3}} - 10}{4} = h^{-1}(y).$$