7. [13 points] The population of fish (in thousands) in a lake t years after 2010 is given by the function

$$
F(t)=\frac{220}{1+2(1.35)^{-t}}
$$

a. [3 points] Find the value and give a practical interpretation of the vertical intercept of the function $F(t)$.

Solution: Vertical intercept $=F(0)=\frac{220}{1+2(1.35)^{0}}=\frac{220}{3} \approx 73.33$
Interpretation: There were $\frac{220}{3}$ thousand fish in the lake in 2010.
b. [4 points] When is the population in the lake equal to 150 thousand fish? Your answer must be found algebraically, written in exact form or rounded to the nearest 0.01 .

Solution:

$$
\begin{aligned}
\frac{220}{1+2(1.35)^{-t}} & =150 \\
220 & =150\left(1+2(1.35)^{-t}\right) \\
220 & =150+300(1.35)^{-t} \\
300(1.35)^{-t} & =70 \\
(1.35)^{-t} & =\frac{7}{30} \\
-t \ln (1.35) & =\ln \left(\frac{7}{30}\right) \\
t & =\frac{\ln \left(\frac{7}{30}\right)}{-\ln (1.35)} \approx 4.85 \text { years after } 2010 .
\end{aligned}
$$

The statement of the problem is included here for your convenience.
The population of fish (in thousands) in a lake t years after 2010 is given by the function

$$
F(t)=\frac{220}{1+2(1.35)^{-t}} .
$$

c. [3 points] Consider the graph of $y=F(t)$ for $-\infty<t<\infty$. Find the equation(s) of the horizontal asymptote(s) of the graph. If the graph has no horizontal asymptotes write "None".

Solution: The graph has horizontal asymptotes at $y=0$ and $y=220$.
d. [3 points] Find the average rate of change of $F(t)$ for $-1 \leq t \leq 5$. Include units.

Solution:
Average rate of change of $F(t)$ for $-1 \leq t \leq 5=\frac{F(5)-F(-1)}{6} \approx \frac{152.14-59.46}{6}$
≈ 15.44 thousand fish per year.

