9. [14 points]
 a. [7 points] A mass is attached to the top of a ceiling by a spring. The height of the mass above the ground oscillates from a minimum of 1.2 meters to a maximum of 2.5 meters. Let \(f(t) \) be the height of the mass above the ground, in meters, at time \(t \) measured in seconds. Some of the values of the function \(f(t) \) are shown below

 \[
 \begin{array}{c|cccc}
 t & 0 & 1 & 2 & 3 & 4 \\
 \hline
 f(t) & 1.65 & 2.38 & 2.38 & 1.65 & 1.2 \\
 \end{array}
 \]

 Note: All the values in the table are rounded to the nearest 0.01.

 Suppose \(f(t) \) is a sinusoidal function.

 i) Find the period, amplitude and midline of \(y = f(t) \).

 \[\textbf{Solution}: \] Period = 5 Amplitude = 0.65 Midline: \(y = 1.85 \)

 ii) Find a formula for \(f(t) \).

 \[f(t) = 1.85 + 0.65 \cos \left(\frac{2\pi}{5} (t - 1.5) \right) \]

 b. [7 points] Find all solutions to \(4 - 5 \sin \left(\frac{\pi}{2} x - \frac{\pi}{6} \right) = 2 \) for \(0 \leq x \leq 5 \). Your answers must be found algebraically and in exact form.

 \[\textbf{Solution}: \]

 \[
 \begin{align*}
 4 - 5 \sin \left(\frac{\pi}{2} x - \frac{\pi}{6} \right) & = 2 \\
 5 \sin \left(\frac{\pi}{2} x - \frac{\pi}{6} \right) & = -2 \\
 \sin \left(\frac{\pi}{2} x - \frac{\pi}{6} \right) & = 0.4 \\
 \frac{\pi}{2} x - \frac{\pi}{6} & = \sin^{-1}(0.4) \\
 \frac{\pi}{2} x & = \sin^{-1}(0.4) + \frac{\pi}{6} \\
 x & = \frac{2}{\pi} \left(\sin^{-1}(0.4) + \frac{\pi}{6} \right) = \frac{2}{\pi} \sin^{-1}(0.4) + \frac{1}{3} \\
 \end{align*}
 \]

 \[
 \begin{align*}
 x_1 & = \frac{2}{\pi} \sin^{-1}(0.4) + \frac{1}{3} \\
 x_2 & = \frac{7}{3} - \frac{2}{\pi} \sin^{-1}(0.4) \\
 x_3 & = x_1 + 4 \\
 \end{align*}
 \]