9. [14 points]
a. [7 points] A mass is attached to the top of a ceiling by a spring. The height of the mass above the ground oscillates from a minimum of 1.2 meters to a maximum of 2.5 meters. Let $f(t)$ be the height of the mass above the ground, in meters, at time t measured in seconds. Some of the values of the function $f(t)$ are shown below

t	0	1	2	3	4
$f(t)$	1.65	2.38	2.38	1.65	1.2

Note: All the values in the table are rounded to the nearest 0.01.
Suppose $f(t)$ is a sinusoidal function.
i) Find the period, amplitude and midline of $y=f(t)$.

Solution: Period $=5$ Amplitude $=0.65$ Midline: $y=1.85$

ii) Find a formula for $f(t)$.

$$
f(t)=1.85+0.65 \cos \left(\frac{2 \pi}{5}(t-1.5)\right)
$$

b. [7 points] Find all solutions to $4-5 \sin \left(\frac{\pi}{2} x-\frac{\pi}{6}\right)=2$ for $0 \leq x \leq 5$. Your answers must be found algebraically and in exact form.

Solution:

$$
\begin{aligned}
4-5 \sin \left(\frac{\pi}{2} x-\frac{\pi}{6}\right) & =2 \\
5 \sin \left(\frac{\pi}{2} x-\frac{\pi}{6}\right) & =-2 \\
\sin \left(\frac{\pi}{2} x-\frac{\pi}{6}\right) & =0.4 \\
\frac{\pi}{2} x-\frac{\pi}{6} & =\sin ^{-1}(0.4) \\
\frac{\pi}{2} x & =\sin ^{-1}(0.4)+\frac{\pi}{6} \\
x & =\frac{2}{\pi}\left(\sin ^{-1}(0.4)+\frac{\pi}{6}\right)=\frac{2}{\pi} \sin ^{-1}(0.4)+\frac{1}{3} .
\end{aligned}
$$

$$
x_{1}=\frac{2}{\pi} \sin ^{-1}(0.4)+\frac{1}{3} \quad x_{2}=\frac{7}{3}-\frac{2}{\pi} \sin ^{-1}(0.4) \quad x_{3}=x_{1}+4
$$

