1. [10 points] Be sure to show your work on this problem. Parts a. and b. are not related. a. [4 points] Solve for the exact value(s) of w in the equation

$$
\log (1-w)-\log (1+w)=1
$$

If there are no solutions, write "no solutions" in the blank and explain your answer.

$$
w=-9 / 11
$$

Solution: Combining the logs, we have

$$
\log \left(\frac{1-w}{1+w}\right)=1
$$

Using both sides as an exponent of 10 , gives $\frac{1-w}{1+w}=10$, so $1-w=10(1+w)$. Combining like terms gives us $-9=11 w$, so $w=-9 / 11$.
b. [6 points] Write the quadratic function $y=-2 x^{2}+16 x-1$ in vertex form by completing the square, write the x and y coordinates of the vertex, and indicate whether the vertex is a minimum, maximum or neither by circling the appropriate option.

In vertex form, $y=-2(x-4)^{2}+31$.
The vertex is $(x, y)=$ \qquad .

The vertex is a:
maximum minimum neither
Solution: The leading coefficient of this function is negative, so whatever our vertex is, it's a max because the parabola opens downward. To complete the square, first we factor out a - 2 from the first two terms to get

$$
-2\left(x^{2}-8 x\right)-1
$$

We need to add 16 inside the parentheses and so we compensate for this by adding 32 outside the parentheses

$$
-2\left(x^{2}-8 x+16\right)-1+32
$$

Factoring the perfect square we created and combining the constants outside the parentheses, we get

$$
-2(x-4)^{2}+31
$$

