2. [14 points] The following table gives values of three functions at three different x values.

x	1	4	9
$f(x)$	5	-4	-13
$g(x)$	48	6	$3 / 16$
$h(x)$	2	4	6

a. [4 points] Peter thinks $f(x)$ is linear. Find Peter's formula for $f(x)$ in exact form, if possible. If $f(x)$ can't be linear based on the information given, write "not possible" in the blank and explain why it can't be linear.

$$
f(x)=\text { not possible } .
$$

Solution: This function can't be linear. The average rate of change on $[1,4]$ is -3 , but on $[4,9]$ it's $-9 / 5$. Linear functions must have constant average rates of change, so this function is disqualified.
b. [5 points] Sarah thinks $g(x)$ is exponential. Find Sarah's formula for $g(x)$ in exact form, if possible. If $g(x)$ can't be exponential based on the information given, write "not possible" in the blank and explain why it can't be exponential.

$$
g(x)=96(0.5)^{x}
$$

Solution: If we try to write an exponential function, we can use the points $(1,48)$ and $(4,6)$ and the equation $g(x)=a b^{x}$. This gives us the system of equations $48=a b$ and $6=a b^{4}$. Eliminating a, we get $\frac{1}{8}=b^{3}$, so $b=0.5$. This means $a=96$. The function we found also passes through the third point $\left(9, \frac{3}{16}\right)$.
c. [5 points] Sally thinks $h(x)$ is a power function. Find Sally's formula for $h(x)$ in exact form, if possible. If $h(x)$ can't be a power function based on the information given, write "not possible" in the blank and explain why it can't be a power function.

$$
h(x)=h(x)=2 x^{1 / 2}
$$

Solution: If we try to write a power function, we can use the points $(1,2)$ and $(4,4)$ and the equation $h(x)=k x^{p}$. The first point immediately gives us $2=k$, and so $4=2(4)^{p}$ (using the second point). We can solve for p using logs or common sense, but either way, $p=1 / 2$. The function we found also passes through the point $(9,6)$, so we have our answer.

