3. [10 points] Be sure to show your work on this problem. Parts a. and b. are not related.
a. [5 points] Consider the function $P=f(t)=4-e^{2 t+5}$. Find $f^{-1}(P)$. Find a horizontal asymptote of $f(t)$.

$$
f^{-1}(P)=\frac{\ln (4-P)-5}{2}
$$

A horizontal asymptote of $f(t)$ is $\quad P=4$. .

Solution: First, $f(t)$ is a shifted exponential function. Before the shift, the horizontal asymptote is $P=0$ (all exponentials have this asymptote). But there is a reflection over the x-axis and a shift up 4 units, so the new asymptote is $P=4$. To find the inverse, we need to solve for t, so we begin by subtracting 4 from both sides and then multiplying by -1 on both sides to get

$$
4-P=e^{2 t+5}
$$

Taking \ln on both sides gives us

$$
\ln (4-P)=2 t+5
$$

Now we subtract 5 and divide by two

$$
t=\frac{\ln (4-P)-5}{2}
$$

b. [5 points] Find all solutions x to the equation

$$
4 \cos (4 x)=1
$$

on the interval $[-1,2]$. Write your answer(s) in exact form. If there are no solutions, write "no solutions" in the blank and explain your answer.

$$
x= \pm \frac{\arccos (1 / 4)}{4}, \frac{\pi}{2} \pm \frac{\arccos (1 / 4)}{4}
$$

Solution: The given equation is equivalent to

$$
\cos (4 x)=1 / 4
$$

Looking on a calculator, we can see there are 4 intersection points between $y=\cos (4 x)$ and $y=1 / 4$. One of these is $x=\frac{\arccos (1 / 4)}{4}$. Let's abbreviate this solution θ Based on the symmetry of the cosine function, $-\theta$ is also a solution. The other two solutions correspond to the first two solutions each shifted one period $(\pi / 2)$ to the right, so all the solutions are:

$$
x= \pm \frac{\arccos (1 / 4)}{4}, \frac{\pi}{2} \pm \frac{\arccos (1 / 4)}{4}
$$

