7. [14 points] Consider the graph of the function $N(x)$ and the formula for the function $L(t)$ represented below. $N(x)$ is linear on $[-1,1]$, and the dotted line is a horizontal asymptote of $N(x)$ at $y=2$. You do not need to show your work for this problem.

$$
L(t)= \begin{cases}\frac{-8(t+2)(t+1)}{t^{2}+4} & \text { for } t<0 \\ \frac{9(t-4)}{t^{2}-9} & \text { for } t \geq 0\end{cases}
$$

a. [6 points] Find the following (write "DNE" if the quantity does not exist):

- $L(N(-1))=$ \qquad .
- $N(L(5))=\underline{1+\frac{18}{16}}$.
- $\lim _{t \rightarrow \infty} L(t)=$ \qquad .
- $\lim _{t \rightarrow-\infty} L(t)=$ \qquad .
- $\lim _{x \rightarrow \infty} N(x)=$ \qquad .
- The average rate of change of $N(x)$ between $x=-5$ and $x=0$ is \qquad $-2 / 5$.
b. [5 points] Find all vertical asymptotes and zeros of $L(t)$. If there are none, write "none" in the corresponding blank

The vertical asymptote(s) of $L(t)$ is/are $\quad t=3$
\qquad .

The zero(s) of $L(t)$ is/are $t=4,-1,-2$.
c. [3 points] Find a formula for $M(x)$, graphed below, as a transformation of $N(x)$.

$$
M(x)=-N\left(\frac{1}{2}(x-1)\right) .
$$

