10. [11 points] After traveling back to present day, Kiki has given up on building time travel machines, but she is still building size-change machines and testing them out on her math notebooks each weighing 1 kg . She has three machines with settings ranging from 1 to 100 (including non-whole number settings). On a setting of 8 , each of the three machines changes the mass of a notebook to 5 kg .
a. [3 points] On a setting of 38 , the first machine changes the mass of the notebook to 3.5 kg . Find a formula for $L(n)$, the mass of a notebook after being transformed by the first machine on a setting of n, if $L(n)$ is a linear function.

$$
L(n)=
$$

\qquad
b. [4 points] On a setting of 10 , the second machine changes the mass of the notebook to $\frac{20}{9} \mathrm{~kg}$. Find a formula for $E(n)$, the mass of a notebook after being transformed by the second machine on a setting of n, if $E(n)$ is an exponential function.

$$
E(n)=
$$

\qquad
c. [4 points] On a setting of 64 , the third machine changes the mass of the notebook to $\frac{5}{4} \mathrm{~kg}$. Find a formula for $W(n)$, the mass of a notebook after being transformed by the third machine on a setting of n, if $W(n)$ is a power function.

$$
W(n)=
$$

\qquad

