1. [11 points] The following table gives values of functions $A(t), B(t), B^{-1}(t)$, and $A(B(t))$ at various values of $t$. Assume $B(t)$ is invertible.

| $t$ | -2 | 0 | 2 | 3 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A(t)$ | 0 | 3 | -2 | 0 | 2 |
| $B(t)$ | $\mathbf{2}$ | 3 | 0 | -2 | 5 |
| $B^{-1}(t)$ | $\mathbf{3}$ | 2 | -2 | 0 | 5 |
| $A(B(t))$ | -2 | $\mathbf{0}$ | 3 | 0 | 2 |

a. [3 points] Could $A(t)$ be invertible? Circle your answer and give a brief explanation.

YES
NO

Solution: The $t$-values -2 and 3 both have outputs of zero, so $A(t)$ will fail the horizontal line test.
b. [3 points] Write the correct values in the three blank spaces in the table.

$$
\begin{aligned}
& \text { Solution: } \quad B^{-1}(2)=-2, \text { so } B(-2)=2 \\
& B(3)=-2, \text { so } B^{-1}(-2)=3 \\
& A(B(0))=A(3)=0
\end{aligned}
$$

c. [2 points] Calculate:

- $A\left(B^{-1}(0)\right)=A(2)=-2$
- $B(A(5))=B(2)=0$
d. [3 points] Find all solutions to the following equation that can be determined using only the information given in the table:

$$
B(A(t))=3
$$

Solution: The input of $B$ that outputs 3 is 0 , so we set

$$
A(t)=0
$$

The table shows two inputs of $A$ that output zero, $t=-2,3$.

