1. [11 points] The following table gives values of functions A(t), B(t), $B^{-1}(t)$, and A(B(t)) at various values of t. Assume B(t) is invertible.

t	-2	0	2	3	5
A(t)	0	3	-2	0	2
B(t)	2	3	0	-2	5
$B^{-1}(t)$	3	2	-2	0	5
A(B(t))	-2	0	3	0	2

a. [3 points] Could A(t) be invertible? Circle your answer and give a **brief explanation**.

YES)
-----	---

Solution: The t-values -2 and 3 both have outputs of zero, so A(t) will fail the horizontal line test.

b. [3 points] Write the correct values in the three blank spaces in the table.

Solution: $B^{-1}(2) = -2$, so B(-2) = 2. B(3) = -2, so $B^{-1}(-2) = 3$. A(B(0)) = A(3) = 0.

c. [2 points] Calculate:

•
$$A(B^{-1}(0)) = A(2) = -2$$

- B(A(5)) = B(2) = 0
- **d**. [3 points] Find all solutions to the following equation that can be determined using only the information given in the table:

$$B(A(t)) = 3.$$

Solution: The input of B that outputs 3 is 0, so we set

$$A(t) = 0.$$

The table shows two inputs of A that output zero, t = -2, 3.