10. [11 points] After traveling back to present day, Kiki has given up on building time travel machines, but she is still building size-change machines and testing them out on her math notebooks each weighing 1 kg . She has three machines with settings ranging from 1 to 100 (including non-whole number settings). On a setting of 8 , each of the three machines changes the mass of a notebook to 5 kg .
a. [3 points] On a setting of 38 , the first machine changes the mass of the notebook to 3.5 kg . Find a formula for $L(n)$, the mass of a notebook after being transformed by the first machine on a setting of n, if $L(n)$ is a linear function.

$$
L(n)=\frac{-1}{20}(n-8)+5
$$

Solution: The slope is $(3.5-5) /(38-8)=\frac{-1}{20}$. We can then use point slope form and the point $(8,5)$ to get the answer.
b. [4 points] On a setting of 10 , the second machine changes the mass of the notebook to $\frac{20}{9} \mathrm{~kg}$. Find a formula for $E(n)$, the mass of a notebook after being transformed by the second machine on a setting of n, if $E(n)$ is an exponential function.

$$
E(n)=\underline{\frac{5}{(2 / 3)^{8}}\left(\frac{2}{3}\right)^{n}}
$$

Solution: If we use the form $E(n)=a b^{n}$, we can set up the equations

$$
\frac{20}{9}=a b^{10}
$$

and

$$
5=a b^{8}
$$

Dividing the first equation by the second, we get $\frac{4}{9}=b^{2}$, so $b=\frac{2}{3}{ }_{5}$ (growth factor must be positive). Then using the second equation above, we get $a=\frac{5}{(2 / 3)^{8}}$.
c. [4 points] On a setting of 64 , the third machine changes the mass of the notebook to $\frac{5}{4} \mathrm{~kg}$. Find a formula for $W(n)$, the mass of a notebook after being transformed by the third machine on a setting of n, if $W(n)$ is a power function.

$$
W(n)=20 n^{-2 / 3}
$$

Solution: If we use the form $W(n)=k n^{p}$, we can set up the equations

$$
\frac{5}{4}=k 64^{p}
$$

and

$$
5=k 8^{p} .
$$

Dividing the first equation by the second, we get $\frac{1}{4}=8^{p}$, so $p=-\frac{2}{3}$. Then using the first equation above, we get $k=20$.

