2. [6 points] After escaping from a pirate ship and being stranded at sea for several days, mad scientist Kiki LeBlanc arrived at a desert island. On the island, the temperature is very predictable, and it can be modeled by a sinusoidal function which varies daily from a high of $90^{\circ} \mathrm{F}$ at 4 pm to a low of $64^{\circ} \mathrm{F}$ at 4 am . Find a formula for a sinusoidal function $T(h)$ that gives the temperature in ${ }^{\circ} \mathrm{F}$ on the island h hours after midnight on any given day.

$$
T(h)=\quad-13 \cos \left(\frac{\pi}{12}(h-4)\right)+77
$$

Solution: The midline is $T=77$, amplitude is 13 , and period is 24 (horizontal scaling is $2 \pi / 24$). Since $T(h)$ at its low point 4 hours after $h=0$ (midnight), we can use a " $-\cos$ " graph shifted right 4.
3. [6 points] Kiki eats lots of papayas and coconuts on the island when she's hungry. When she eats w pounds of papayas, she stays full for $P(w)$ hours. When she eats w pounds of coconuts, she stays full for $C(w)$ hours. Give practical interpretations of the following expressions:

- $C^{-1}(3)=2$.

Solution: This means: Kiki stays full for 3 hours when she eats 2 pounds of coconuts.

- $P^{-1}(C(4))$

Solution: $\quad P^{-1}(C(4))$ is the weight of papayas Kiki needs to eat to stay full as long as if she ate 4 pounds of coconut.

